論文の概要: Adaptive Experiments Under High-Dimensional and Data Sparse Settings: Applications for Educational Platforms
- arxiv url: http://arxiv.org/abs/2501.03999v2
- Date: Mon, 24 Feb 2025 05:29:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:50:00.806403
- Title: Adaptive Experiments Under High-Dimensional and Data Sparse Settings: Applications for Educational Platforms
- Title(参考訳): 高次元・データスパース環境下での適応実験:教育プラットフォームへの応用
- Authors: Haochen Song, Ilya Musabirov, Ananya Bhattacharjee, Audrey Durand, Meredith Franklin, Anna Rafferty, Joseph Jay Williams,
- Abstract要約: トンプソンサンプリングのような従来の適応型ポリシは、高次元およびスパースな設定でのスケーラビリティに苦労する。
そこで,本研究では,サンプルサイズを実測可能な処理数を決定するためのフレームワークを提案する。
各種試料サイズおよび処理条件におけるWAPTSの比較評価を行った。
- 参考スコア(独自算出の注目度): 10.565276803897325
- License:
- Abstract: In online educational platforms, adaptive experiment designs play a critical role in personalizing learning pathways, instructional sequencing, and content recommendations. Traditional adaptive policies, such as Thompson Sampling, struggle with scalability in high-dimensional and sparse settings such as when there are large amount of treatments (arms) and limited resources such as funding and time to conduct to a classroom constraint student size. Furthermore, the issue of under-exploration in large-scale educational interventions can lead to suboptimal learning recommendations. To address these challenges, we build upon the concept of lenient regret, which tolerates limited suboptimal selections to enhance exploratory learning, and propose a framework for determining the feasible number of treatments given a sample size. We illustrate these ideas with a case study in online educational learnersourcing examples, where adaptive algorithms dynamically allocate peer-crafted interventions to other students under active recall exercise. Our proposed Weighted Allocation Probability Adjusted Thompson Sampling (WAPTS) algorithm enhances the efficiency of treatment allocation by adjusting sampling weights to balance exploration and exploitation in data-sparse environments. We present comparative evaluations of WAPTS across various sample sizes (N=50, 300, 1000) and treatment conditions, demonstrating its ability to mitigate under-exploration while optimizing learning outcomes.
- Abstract(参考訳): オンライン教育プラットフォームでは、適応的な実験設計が学習経路のパーソナライズ、命令シークエンシング、コンテンツレコメンデーションにおいて重要な役割を果たしている。
トンプソン・サンプリングのような伝統的な適応的政策は、大量の治療(武器)や資金や時間といった限られたリソースが教室の制約のある学生の規模に制限される場合など、高次元およびスパースな設定でのスケーラビリティに苦しむ。
さらに、大規模な教育介入における探索不足は、最適以下の学習勧告につながる可能性がある。
これらの課題に対処するために、探索学習を強化するために限られた最適選択を許容する寛大な後悔の概念を構築し、サンプルサイズが与えられた有効な治療数を決定するための枠組みを提案する。
適応アルゴリズムは、アクティブなリコール演習中の他の学生にピアクラフトの介入を動的に割り当てる。
提案手法は,標本重量を調整し,データ分散環境における探索と利用のバランスをとることにより,処理割当の効率を向上させる。
本研究では,様々なサンプルサイズ (N=50, 300, 1000) と治療条件の比較評価を行い, 学習結果の最適化を図りながら探索を緩和する能力を示した。
関連論文リスト
- Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
大きな言語モデル(LLM)は、日々のアプリケーションにますます組み込まれています。
個人ユーザの多様な嗜好との整合性を確保することは、重要な課題となっている。
数発のステアライメントのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-18T16:14:59Z) - Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis [69.37718774071793]
本稿では,レコメンデーションシステムを理解するための新しい情報理論手法を提案する。
9つのデータセットで7つのレコメンデーションアルゴリズムを評価し、測定値と標準的なパフォーマンス指標の関係を明らかにする。
論文 参考訳(メタデータ) (2024-10-03T13:02:07Z) - Submodular Maximization Approaches for Equitable Client Selection in Federated Learning [4.167345675621377]
従来の学習フレームワークでは、トレーニングのためのクライアント選択は、通常、各イテレーションでクライアントのサブセットをランダムにサンプリングする。
本稿では,ランダムクライアント選択の限界に対処するために,SUBTRUNCとUNIONFLという2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-24T22:40:31Z) - Optimization-Driven Adaptive Experimentation [7.948144726705323]
実世界の実験には、バッチで遅延したフィードバック、非定常性、複数の目的と制約、そして(時には)パーソナライゼーションが含まれる。
これらの課題にプロブレム単位で対処するための適応的手法の調整は不可能であり、静的設計はデファクトスタンダードのままである。
本稿では,多種多様な目的,制約,統計的手順を柔軟に組み込む数学的プログラミングの定式化について述べる。
論文 参考訳(メタデータ) (2024-08-08T16:29:09Z) - Adaptive Experimentation When You Can't Experiment [55.86593195947978]
本稿では,Emphcon founded the pure exploration transductive linear bandit (textttCPET-LB) problem。
オンラインサービスは、ユーザーを特定の治療にインセンティブを与える、適切にランダム化された励ましを利用することができる。
論文 参考訳(メタデータ) (2024-06-15T20:54:48Z) - Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model [86.9619638550683]
視覚言語基礎モデルは、画像とテキストのペアデータに拡張性があるため、多数の下流タスクで顕著な成功を収めている。
しかし、これらのモデルは、決定ショートカットの結果、きめ細かな画像分類などの下流タスクに適用した場合に重大な制限を呈する」。
論文 参考訳(メタデータ) (2024-03-01T09:01:53Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
我々は、様々な武器の報酬間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
特に、様々な武器の報酬の間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
論文 参考訳(メタデータ) (2023-12-19T13:17:43Z) - A Sequentially Fair Mechanism for Multiple Sensitive Attributes [0.46040036610482665]
アルゴリズムフェアネスの標準的なユースケースでは、感度変数と対応するスコアの関係を排除することが目標である。
センシティブな特徴の集合にまたがって、段階的に公平性を達成できるシーケンシャルなフレームワークを提案する。
当社のアプローチは、リスクと不公平の間のトレードオフを緩和するフレームワークを包含することで、公平性をシームレスに拡張します。
論文 参考訳(メタデータ) (2023-09-12T22:31:57Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Demarcating Endogenous and Exogenous Opinion Dynamics: An Experimental
Design Approach [27.975266406080152]
本稿では,実験的な設計手法に基づく教師なし分類手法のスイートを設計する。
平均推定誤差の異なる測度を最小化するイベントのサブセットを選択することを目的としている。
我々の実験は、不衛生事象や衛生事象に対する予測性能の検証から、様々な大きさの最適なサブセットを選択する効果の検証まで多岐にわたる。
論文 参考訳(メタデータ) (2021-02-11T11:38:15Z) - Optimizing Offer Sets in Sub-Linear Time [5.027714423258537]
本稿では,各項目数のサブ線形時間内で動作するパーソナライズされたオファーセット最適化アルゴリズムを提案する。
私たちのアルゴリズムは完全にデータ駆動で、ユーザーのサンプルに依存します。
論文 参考訳(メタデータ) (2020-11-17T13:02:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。