論文の概要: KN-LIO: Geometric Kinematics and Neural Field Coupled LiDAR-Inertial Odometry
- arxiv url: http://arxiv.org/abs/2501.04263v1
- Date: Wed, 08 Jan 2025 04:14:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:54:58.428706
- Title: KN-LIO: Geometric Kinematics and Neural Field Coupled LiDAR-Inertial Odometry
- Title(参考訳): KN-LIO:幾何力学とニューラルネットワーク結合LiDAR-慣性オドメトリー
- Authors: Zhong Wang, Lele Ren, Yue Wen, Hesheng Wang,
- Abstract要約: 近年のニューラルフィールド技術は高密度マッピングにおいて大きな可能性を秘めているが、純粋なLiDARマッピングは高ダイナミックな車両で作業することは困難である。
そこで我々は,幾何キネマティクスとニューラルフィールドを密結合させて,同時状態推定と密写像能力を向上する新しい解を提案する。
我々のKN-LIOは、ポーズ推定において既存の最先端ソリューションに匹敵する性能を達成し、純粋なLiDAR法よりも高密度マッピング精度を向上させる。
- 参考スコア(独自算出の注目度): 11.851882531837244
- License:
- Abstract: Recent advancements in LiDAR-Inertial Odometry (LIO) have boosted a large amount of applications. However, traditional LIO systems tend to focus more on localization rather than mapping, with maps consisting mostly of sparse geometric elements, which is not ideal for downstream tasks. Recent emerging neural field technology has great potential in dense mapping, but pure LiDAR mapping is difficult to work on high-dynamic vehicles. To mitigate this challenge, we present a new solution that tightly couples geometric kinematics with neural fields to enhance simultaneous state estimation and dense mapping capabilities. We propose both semi-coupled and tightly coupled Kinematic-Neural LIO (KN-LIO) systems that leverage online SDF decoding and iterated error-state Kalman filtering to fuse laser and inertial data. Our KN-LIO minimizes information loss and improves accuracy in state estimation, while also accommodating asynchronous multi-LiDAR inputs. Evaluations on diverse high-dynamic datasets demonstrate that our KN-LIO achieves performance on par with or superior to existing state-of-the-art solutions in pose estimation and offers improved dense mapping accuracy over pure LiDAR-based methods. The relevant code and datasets will be made available at https://**.
- Abstract(参考訳): LIO(LiDAR-Inertial Odometry)の最近の進歩は、多くの応用を加速させている。
しかし、従来のLOOシステムはマッピングよりもローカライズに重点を置いている傾向があり、地図は主に疎幾何学的要素で構成されており、下流のタスクには向いていない。
近年のニューラルフィールド技術は高密度マッピングにおいて大きな可能性を秘めているが、純粋なLiDARマッピングは高ダイナミックな車両で作業することは困難である。
この課題を軽減するため、我々は、幾何キネマティクスとニューラルフィールドを密結合させて、同時状態推定と高密度マッピング機能を強化する新しいソリューションを提案する。
オンラインSDFデコーディングと繰り返しエラー状態Kalmanフィルタを利用してレーザーと慣性データを融合する半結合型および密結合型Kinematic-Neural LIO(KN-LIO)システムを提案する。
我々のKN-LIOは、情報の損失を最小限に抑え、状態推定の精度を向上させるとともに、非同期マルチLiDAR入力の調整も行う。
多様な高ダイナミックデータセットの評価により,我々のKN-LIOは,既存の最先端ソリューションと同等以上の性能を示し,純LiDAR法よりも高密度マッピング精度が向上した。
関連するコードとデータセットはhttps://**.com/*で公開されます。
関連論文リスト
- LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
LiDARシミュレーションは、自動運転におけるクローズドループシミュレーションにおいて重要な役割を果たす。
都市景観におけるLiDARセンサスキャンをリアルタイムに再現するために,最初のLiDARガウス法であるLiDAR-GSを提案する。
我々の手法は、深度、強度、レイドロップチャンネルを同時に再現することに成功し、公開可能な大規模シーンデータセットにおけるフレームレートと品質の両方のレンダリング結果を達成する。
論文 参考訳(メタデータ) (2024-10-07T15:07:56Z) - Parametric Taylor series based latent dynamics identification neural networks [0.3139093405260182]
非線形力学の新しい潜在的同定法であるP-TLDINetを導入する。
これはテイラー級数展開とResNetsに基づく新しいニューラルネットワーク構造に依存している。
論文 参考訳(メタデータ) (2024-10-05T15:10:32Z) - Scale-Translation Equivariant Network for Oceanic Internal Solitary Wave Localization [7.444865250744234]
内部孤立波(英:internal Solitary wave、ISW)は、内部の海洋でしばしば観測される重力波である。
光リモートセンシング画像における雲のカバーは、地表面の情報を可変的に曖昧にし、ぼやけたり、表面の観察を欠いたりする。
本稿では,ISWを自動検出するアルゴリズムを用いた機械学習ソリューションを提案する。
論文 参考訳(メタデータ) (2024-06-18T21:09:56Z) - Multi-Modal Data-Efficient 3D Scene Understanding for Autonomous Driving [58.16024314532443]
我々は、異なるLiDARスキャンからレーザービーム操作を統合するフレームワークであるLaserMix++を導入し、データ効率の学習を支援するためにLiDAR-カメラ対応を組み込んだ。
結果は、LaserMix++が完全に教師付き代替よりも優れており、5倍のアノテーションで同等の精度を実現していることを示している。
この大幅な進歩は、LiDARベースの3Dシーン理解システムにおける広範囲なラベル付きデータへの依存を減らすための半教師付きアプローチの可能性を示している。
論文 参考訳(メタデータ) (2024-05-08T17:59:53Z) - LiDAR-NeRF: Novel LiDAR View Synthesis via Neural Radiance Fields [112.62936571539232]
本稿では,LiDARセンサのための新しいビュー合成手法を提案する。
スタイルトランスファーニューラルネットワークを用いた従来のモデルベースLiDARシミュレータは、新しいビューのレンダリングに応用できる。
ニューラル放射場(NeRF)を用いて幾何学と3D点の属性の連成学習を容易にする。
論文 参考訳(メタデータ) (2023-04-20T15:44:37Z) - NeRF-LOAM: Neural Implicit Representation for Large-Scale Incremental
LiDAR Odometry and Mapping [14.433784957457632]
ニューラルドメトリー,ニューラルマッピング,メッシュ再構成の3つのモジュールからなる新しいNeRF-LOAMを提案する。
提案手法は,LiDARデータを用いた大規模環境において,最先端のオドメトリーとマッピング性能を実現するとともに,強力な一般化を実現する。
論文 参考訳(メタデータ) (2023-03-19T16:40:36Z) - CodeVIO: Visual-Inertial Odometry with Learned Optimizable Dense Depth [83.77839773394106]
本稿では,軽量で密結合の深い深度ネットワークと視覚慣性オドメトリーシステムを提案する。
我々は、初期深度予測の精度を高めるために、以前にVIOから切り離されたスパース特徴を持つネットワークを提供する。
本稿では,ネットワークとコードヤコビアンでのみGPUアクセラレーションを活用しながら,シングルスレッド実行でリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-12-18T09:42:54Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
本稿では,これら2つの課題に対処するために,自己教師型LiDARオドメトリー法(SelfVoxeLO)を提案する。
具体的には、生のLiDARデータを直接処理する3D畳み込みネットワークを提案し、3D幾何パターンをよりよく符号化する特徴を抽出する。
我々は,KITTIとApollo-SouthBayという2つの大規模データセット上での手法の性能を評価する。
論文 参考訳(メタデータ) (2020-10-19T09:23:39Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。