論文の概要: Parametric Taylor series based latent dynamics identification neural networks
- arxiv url: http://arxiv.org/abs/2410.04193v1
- Date: Sat, 5 Oct 2024 15:10:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 13:41:32.260962
- Title: Parametric Taylor series based latent dynamics identification neural networks
- Title(参考訳): パラメトリックテイラー級数に基づく潜在ダイナミクス同定ニューラルネットワーク
- Authors: Xinlei Lin, Dunhui Xiao,
- Abstract要約: 非線形力学の新しい潜在的同定法であるP-TLDINetを導入する。
これはテイラー級数展開とResNetsに基づく新しいニューラルネットワーク構造に依存している。
- 参考スコア(独自算出の注目度): 0.3139093405260182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerical solving parameterised partial differential equations (P-PDEs) is highly practical yet computationally expensive, driving the development of reduced-order models (ROMs). Recently, methods that combine latent space identification techniques with deep learning algorithms (e.g., autoencoders) have shown great potential in describing the dynamical system in the lower dimensional latent space, for example, LaSDI, gLaSDI and GPLaSDI. In this paper, a new parametric latent identification of nonlinear dynamics neural networks, P-TLDINets, is introduced, which relies on a novel neural network structure based on Taylor series expansion and ResNets to learn the ODEs that govern the reduced space dynamics. During the training process, Taylor series-based Latent Dynamic Neural Networks (TLDNets) and identified equations are trained simultaneously to generate a smoother latent space. In order to facilitate the parameterised study, a $k$-nearest neighbours (KNN) method based on an inverse distance weighting (IDW) interpolation scheme is introduced to predict the identified ODE coefficients using local information. Compared to other latent dynamics identification methods based on autoencoders, P-TLDINets remain the interpretability of the model. Additionally, it circumvents the building of explicit autoencoders, avoids dependency on specific grids, and features a more lightweight structure, which is easy to train with high generalisation capability and accuracy. Also, it is capable of using different scales of meshes. P-TLDINets improve training speeds nearly hundred times compared to GPLaSDI and gLaSDI, maintaining an $L_2$ error below $2\%$ compared to high-fidelity models.
- Abstract(参考訳): 数値解法 偏微分方程式 (P-PDE) は非常に実用的だが計算コストが高く、低次モデル (ROM) の開発を推進している。
近年,潜時空間識別技術とディープラーニングアルゴリズム(例えば,オートエンコーダ)を組み合わせる手法は,LaSDI,gLaSDI,GPLaSDIなどの低次元潜時空間における力学系を記述する上で大きな可能性を示している。
本稿では、テイラー級数展開とResNetsに基づく新しいニューラルネットワーク構造を基盤として、非線形力学ニューラルネットワーク P-TLDINets のパラメトリック潜時同定を導入し、縮小された空間力学を管理するODEを学習する。
トレーニングプロセス中、テイラー級数に基づく潜在動的ニューラルネットワーク(TLDNet)と特定方程式を同時にトレーニングし、よりスムーズな潜在空間を生成する。
パラメータ化研究を容易にするために,逆距離重み付け(IDW)補間法に基づくk$-nearest neighbors (KNN)法を導入し,同定されたODE係数を局所情報を用いて予測する。
オートエンコーダに基づく他の潜在力学同定手法と比較して、P-TLDINetはモデルの解釈可能性を維持している。
さらに、明示的なオートエンコーダの構築を回避し、特定のグリッドへの依存を回避し、より軽量な構造を特徴としている。
また、異なるスケールのメッシュを使用することもできる。
P-TLDINetsはGPLaSDIやgLaSDIと比較してトレーニング速度を100倍近く改善し、高忠実度モデルに比べて2\%以下の誤差を維持している。
関連論文リスト
- Liquid Fourier Latent Dynamics Networks for fast GPU-based numerical simulations in computational cardiology [0.0]
複素測地上での高次非線形微分方程式の多スケールおよび多物理集合に対するパラメータ化時空間サロゲートモデルを作成するために、Latent Dynamics Networks(LDNets)の拡張を提案する。
LFLDNetは、時間的ダイナミクスのために神経学的にインスパイアされたスパースな液体ニューラルネットワークを使用し、時間進行のための数値ソルバの要求を緩和し、パラメータ、精度、効率、学習軌道の点で優れたパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2024-08-19T09:14:25Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Latent Dynamics Networks (LDNets): learning the intrinsic dynamics of
spatio-temporal processes [2.3694122563610924]
ラテント・ダイナミクス・ネットワーク(LDNet)は、非マルコフ力学系の低次元固有力学を発見できる。
LDNetは軽量で訓練が容易で、時間外挿方式でも精度と一般化性に優れている。
論文 参考訳(メタデータ) (2023-04-28T21:11:13Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - gLaSDI: Parametric Physics-informed Greedy Latent Space Dynamics
Identification [0.5249805590164902]
物理インフォームド・グレディ・ラテント・スペース・ダイナミクス同定法(gLa)を提案する。
インタラクティブなトレーニングアルゴリズムがオートエンコーダとローカルDIモデルに採用され、単純な潜在空間のダイナミクスを識別できる。
提案手法の有効性は, 様々な非線形力学問題をモデル化することによって実証される。
論文 参考訳(メタデータ) (2022-04-26T00:15:46Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Learning POD of Complex Dynamics Using Heavy-ball Neural ODEs [7.388910452780173]
我々は、最近提案されたヘビーボールニューラルODE(HBNODE)を用いて、データ駆動の低次モデルの学習を行う。
HBNODEは、理論的保証付きPODベースのROMを学習する上で、いくつかの実用的な利点がある。
論文 参考訳(メタデータ) (2022-02-24T22:00:25Z) - Accelerating Neural ODEs Using Model Order Reduction [0.0]
本稿では,ニューラルネットワークの圧縮と高速化に数学的モデルオーダー削減法が利用できることを示す。
我々は,ニューラルネットワークの層として必要な部分空間投影と操作を統合するニューラルODEを開発することで,新しい圧縮手法を実装した。
論文 参考訳(メタデータ) (2021-05-28T19:27:09Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。