論文の概要: Cluster & Disperse: a general air conflict resolution heuristic using unsupervised learning
- arxiv url: http://arxiv.org/abs/2501.04281v1
- Date: Wed, 08 Jan 2025 05:09:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:54:46.056887
- Title: Cluster & Disperse: a general air conflict resolution heuristic using unsupervised learning
- Title(参考訳): クラスタと分散:教師なし学習を用いた一般的な空気紛争解決ヒューリスティック
- Authors: Mirmojtaba Gharibi, John-Paul Clarke,
- Abstract要約: 教師なし学習を用いて、軌道と飛行レベルの解空間を探索する。
最初のアルゴリズムはCluster & Disperseと呼ばれ、各イテレーションで各クラスタで最も問題の多いフライトを別のフライトレベルに割り当てます。
同様の考え方に基づく水平平面の新しいアルゴリズムを開発した。これは、勾配降下と社会力を用いて、同じ飛行レベルで衝突点を空間的に分散するものである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We provide a general and malleable heuristic for the air conflict resolution problem. This heuristic is based on a new neighborhood structure for searching the solution space of trajectories and flight-levels. Using unsupervised learning, the core idea of our heuristic is to cluster the conflict points and disperse them in various flight levels. Our first algorithm is called Cluster & Disperse and in each iteration it assigns the most problematic flights in each cluster to another flight-level. In effect, we shuffle them between the flight-levels until we achieve a well-balanced configuration. The Cluster & Disperse algorithm then uses any horizontal plane conflict resolution algorithm as a subroutine to solve these well-balanced instances. Nevertheless, we develop a novel algorithm for the horizontal plane based on a similar idea. That is we cluster and disperse the conflict points spatially in the same flight level using the gradient descent and a social force. We use a novel maneuver making flights travel on an arc instead of a straight path which is based on the aviation routine of the Radius to Fix legs. Our algorithms can handle a high density of flights within a reasonable computation time. We put their performance in context with some notable algorithms from the literature. Being a general framework, a particular strength of the Cluster & Disperse is its malleability in allowing various constraints regarding the aircraft or the environment to be integrated with ease. This is in contrast to the models for instance based on mixed integer programming.
- Abstract(参考訳): 航空紛争解決問題に対する一般かつ順応可能なヒューリスティックを提供する。
このヒューリスティックは、軌道と飛行レベルの解空間を探索する新しい近傍構造に基づいている。
教師なしの学習を用いて、我々のヒューリスティックの基本的な考え方は、対立点をまとめて様々な飛行レベルで分散させることである。
最初のアルゴリズムはCluster & Disperseと呼ばれ、各イテレーションで各クラスタの最も問題のあるフライトを別のフライトレベルに割り当てます。
実質的には、バランスの取れた設定に到達するまで、飛行レベル間でそれらをシャッフルします。
Cluster & Disperseアルゴリズムは、任意の水平平面コンフリクト解決アルゴリズムをサブルーチンとして使用して、これらのバランスのとれたインスタンスを解決する。
それにもかかわらず、我々は同様の考えに基づく水平平面の新しいアルゴリズムを開発した。
つまり、勾配降下と社会的力を用いて、同じ飛行レベルで衝突点を空間的にクラスターし分散する。
我々は、Radiusの飛行ルーチンをベースとした直線ではなく、アークを飛行して脚を固定する新しい操縦方法を用いています。
我々のアルゴリズムは、合理的な計算時間で高密度の飛行を処理できる。
文献から得られたいくつかの注目すべきアルゴリズムと、それらのパフォーマンスを関連づけた。
一般的な枠組みとして、クラスター・アンド・ディスパース(Cluster & Disperse)の特長は、航空機や環境に関する様々な制約を容易に統合できるようにするための適合性である。
これは例えば混合整数プログラミングに基づくモデルとは対照的である。
関連論文リスト
- A Graph-Enhanced Deep-Reinforcement Learning Framework for the Aircraft Landing Problem [0.0]
航空機着陸問題(英: Aircraft Landing Problem、ALP)は、航空機の輸送と管理において難しい問題の一つである。
本稿では,グラフニューラルネットワークとアクター批判アーキテクチャを組み合わせてALPに対処する,新しい深層強化学習フレームワークを提案する。
その結果、学習アルゴリズムは異なる問題集合上でテストでき、その結果は研究アルゴリズムの運用と競合することを示した。
論文 参考訳(メタデータ) (2025-02-18T08:02:17Z) - A Multiagent Path Search Algorithm for Large-Scale Coalition Structure Generation [61.08720171136229]
結合構造生成はマルチエージェントシステムにおける基本的な計算問題である。
我々はCSGの多エージェントパス探索アルゴリズムであるSALDAEを開発し、連立構造グラフ上で運用する。
論文 参考訳(メタデータ) (2025-02-14T15:21:27Z) - A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent [57.64826450787237]
本研究では, 分散勾配降下アルゴリズムの挙動を, 敵対的腐敗の有無で解析する方法を示す。
汚職耐性の分散最適化アルゴリズムを設計するために、(怠慢な)ミラー降下からアイデアをどう使うかを示す。
MNISTデータセットの線形回帰、サポートベクトル分類、ソフトマックス分類に基づく実験は、我々の理論的知見を裏付けるものである。
論文 参考訳(メタデータ) (2024-07-19T08:29:12Z) - GlobalPointer: Large-Scale Plane Adjustment with Bi-Convex Relaxation [44.98626468432535]
平面調整は多くの3次元アプリケーションにおいて重要であり、同時にポーズ推定と平面の回復を伴う。
我々はtextitBi-Convex Relaxation と呼ばれる新しい最適化戦略を利用して、元の問題を2つのより単純なサブプロブレムに分解する。
平面調整問題であるtextitGlobalPointer と textitGlobalPointer++ の2つのアルゴリズム変種を提案する。
論文 参考訳(メタデータ) (2024-07-18T14:09:03Z) - Exploratory Landscape Analysis for Mixed-Variable Problems [0.7252027234425334]
決定空間が連続変数、バイナリ変数、整数変数、カテゴリー変数の混合である混合変数問題に対する探索的景観特徴を計算する手段を提供する。
実用化のためのメリットをさらに強調するため,自動アルゴリズム選択研究を設計・実施する。
トレーニングされたアルゴリズムセレクタは、すべてのベンチマーク問題に対して、単一のベストと仮想ベストのギャップを57.5%縮めることができる。
論文 参考訳(メタデータ) (2024-02-26T10:19:23Z) - Large Scale Constrained Clustering With Reinforcement Learning [1.3597551064547502]
ネットワークが与えられた場合、各ノードではなく、クラスタレベルでリソースを割り当てることによって、リソースの割り当てと使用効率が向上する。
本稿では,この制約付きクラスタリング問題を強化学習を用いて解く手法を提案する。
結果の節では,大規模インスタンスにおいても,アルゴリズムが最適に近い解を見つけることを示す。
論文 参考訳(メタデータ) (2024-02-15T18:27:18Z) - MultiZenoTravel: a Tunable Benchmark for Multi-Objective Planning with
Known Pareto Front [71.19090689055054]
多目的AI計画では、既知のPareto Frontsを示すベンチマークが不足している。
提案するベンチマーク生成器と専用ソルバは、結果のインスタンスの真のParetoを確実に計算する。
本稿では,制約された問題に対して最適な計画を示すとともに,制約された問題に対する一般的な問題を減らす方法を示す。
論文 参考訳(メタデータ) (2023-04-28T07:09:23Z) - Local Stochastic Bilevel Optimization with Momentum-Based Variance
Reduction [104.41634756395545]
具体的には、まず、決定論的勾配に基づくアルゴリズムであるFedBiOを提案する。
FedBiOの複雑性は$O(epsilon-1.5)$である。
本アルゴリズムは数値実験において,他のベースラインと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2022-05-03T16:40:22Z) - Resource Allocation in Multi-armed Bandit Exploration: Overcoming
Sublinear Scaling with Adaptive Parallelism [107.48538091418412]
腕の引っ張りに様々な量の資源を割り当てることができる分割可能な資源にアクセス可能な場合,マルチアームの帯状地における探索について検討する。
特に、分散コンピューティングリソースの割り当てに重点を置いており、プル毎により多くのリソースを割り当てることで、結果をより早く得ることができます。
論文 参考訳(メタデータ) (2020-10-31T18:19:29Z) - Spectral Clustering with Smooth Tiny Clusters [14.483043753721256]
本稿では,データのスムーズさを初めて考慮した新しいクラスタリングアルゴリズムを提案する。
私たちのキーとなるアイデアは、スムーズなグラフを構成する小さなクラスタをクラスタ化することです。
本稿では,マルチスケールな状況に着目するが,データのスムーズさの考え方はどのクラスタリングアルゴリズムにも確実に拡張できる。
論文 参考訳(メタデータ) (2020-09-10T05:21:20Z) - A black-box adversarial attack for poisoning clustering [78.19784577498031]
本稿では,クラスタリングアルゴリズムのロバスト性をテストするために,ブラックボックス対逆攻撃法を提案する。
我々の攻撃は、SVM、ランダムフォレスト、ニューラルネットワークなどの教師付きアルゴリズムに対しても転送可能であることを示す。
論文 参考訳(メタデータ) (2020-09-09T18:19:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。