Machine Learning and statistical classification of CRISPR-Cas12a diagnostic assays
- URL: http://arxiv.org/abs/2501.04413v1
- Date: Wed, 08 Jan 2025 10:59:36 GMT
- Title: Machine Learning and statistical classification of CRISPR-Cas12a diagnostic assays
- Authors: Nathan Khosla, Jake M. Lesinski, Marcus Haywood-Alexander, Andrew J. deMello, Daniel A. Richards,
- Abstract summary: CRISPR-based diagnostics have gained increasing attention as biosensing tools able to address limitations in contemporary molecular diagnostic tests.
We develop a long short-term memory recurrent neural network to classify CRISPR-biosensing data, achieving 100% specificity on our model data set.
- Score: 0.0
- License:
- Abstract: CRISPR-based diagnostics have gained increasing attention as biosensing tools able to address limitations in contemporary molecular diagnostic tests. To maximise the performance of CRISPR-based assays, much effort has focused on optimizing the chemistry and biology of the biosensing reaction. However, less attention has been paid to improving the techniques used to analyse CRISPR-based diagnostic data. To date, diagnostic decisions typically involve various forms of slope-based classification. Such methods are superior to traditional methods based on assessing absolute signals, but still have limitations. Herein, we establish performance benchmarks (total accuracy, sensitivity, and specificity) using common slope-based methods. We compare the performance of these benchmark methods with three different quadratic empirical distribution function statistical tests, finding significant improvements in diagnostic speed and accuracy when applied to a clinical data set. Two of the three statistical techniques, the Kolmogorov-Smirnov and Anderson-Darling tests, report the lowest time-to-result and highest total test accuracy. Furthermore, we developed a long short-term memory recurrent neural network to classify CRISPR-biosensing data, achieving 100% specificity on our model data set. Finally, we provide guidelines on choosing the classification method and classification method parameters that best suit a diagnostic assays needs.
Related papers
- A Robust Support Vector Machine Approach for Raman COVID-19 Data Classification [0.7864304771129751]
In this paper, we investigate the performance of a novel robust formulation for Support Vector Machine (SVM) in classifying COVID-19 samples obtained from Raman spectroscopy.
We derive robust counterpart models of deterministic formulations using bounded-by-norm uncertainty sets around each observation.
The effectiveness of our approach is validated on real-world COVID-19 datasets provided by Italian hospitals.
arXiv Detail & Related papers (2025-01-29T14:02:45Z) - Step-by-Step Guidance to Differential Anemia Diagnosis with Real-World Data and Deep Reinforcement Learning [1.5272023683653024]
Clinical diagnostic guidelines outline the key questions to answer to reach a diagnosis.
We aim to develop a model that learns from electronic health records to determine the optimal sequence of actions for accurate diagnosis.
arXiv Detail & Related papers (2024-12-03T08:45:50Z) - An Evaluation of Machine Learning Approaches for Early Diagnosis of
Autism Spectrum Disorder [0.0]
Autistic Spectrum Disorder (ASD) is a neurological disease characterized by difficulties with social interaction, communication, and repetitive activities.
This study employs diverse machine learning methods to identify crucial ASD traits, aiming to enhance and automate the diagnostic process.
arXiv Detail & Related papers (2023-09-20T21:23:37Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Validating GAN-BioBERT: A Methodology For Assessing Reporting Trends In
Clinical Trials [3.164363223464948]
This study develops a sentiment classification algorithm for clinical trial abstracts using a semi-supervised natural language process model.
The use of this algorithm was found to have a classification accuracy of 91.3%, with a macro F1-Score of 0.92, which is a significant improvement in accuracy when compared to previous methods.
arXiv Detail & Related papers (2021-06-01T17:51:54Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Curvature-based Feature Selection with Application in Classifying
Electronic Health Records [13.427883408828642]
We propose an efficient curvature-based feature selection method for supporting more precise diagnosis.
Our method achieves state-of-the-art performance on four benchmark healthcare data sets.
arXiv Detail & Related papers (2021-01-10T16:55:40Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.