論文の概要: Hidden Entity Detection from GitHub Leveraging Large Language Models
- arxiv url: http://arxiv.org/abs/2501.04455v1
- Date: Wed, 08 Jan 2025 12:18:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:55:35.091020
- Title: Hidden Entity Detection from GitHub Leveraging Large Language Models
- Title(参考訳): 大規模言語モデルを活用するGitHubから隠れたエンティティ検出
- Authors: Lu Gan, Martin Blum, Danilo Dessi, Brigitte Mathiak, Ralf Schenkel, Stefan Dietze,
- Abstract要約: 大言語モデル(LLM)はゼロショット学習(ZSL)や少数ショット学習(FSL)に依存するアプローチへの道を開いた。
本稿では,LLMを利用してGitHubリポジトリからテキストコンテンツ内のデータセットやソフトウェアを自動的に検出する可能性について検討する。
- 参考スコア(独自算出の注目度): 5.774655701780098
- License:
- Abstract: Named entity recognition is an important task when constructing knowledge bases from unstructured data sources. Whereas entity detection methods mostly rely on extensive training data, Large Language Models (LLMs) have paved the way towards approaches that rely on zero-shot learning (ZSL) or few-shot learning (FSL) by taking advantage of the capabilities LLMs acquired during pretraining. Specifically, in very specialized scenarios where large-scale training data is not available, ZSL / FSL opens new opportunities. This paper follows this recent trend and investigates the potential of leveraging Large Language Models (LLMs) in such scenarios to automatically detect datasets and software within textual content from GitHub repositories. While existing methods focused solely on named entities, this study aims to broaden the scope by incorporating resources such as repositories and online hubs where entities are also represented by URLs. The study explores different FSL prompt learning approaches to enhance the LLMs' ability to identify dataset and software mentions within repository texts. Through analyses of LLM effectiveness and learning strategies, this paper offers insights into the potential of advanced language models for automated entity detection.
- Abstract(参考訳): 名前付きエンティティ認識は、構造化されていないデータソースから知識ベースを構築する際に重要なタスクである。
エンティティ検出手法は、主に広範なトレーニングデータに依存しているのに対して、Large Language Models (LLMs) は、事前トレーニング中にLLMが取得した能力を生かしてゼロショット学習 (ZSL) や少数ショット学習 (FSL) に依存するアプローチへの道を開いた。
具体的には、大規模なトレーニングデータが利用できない非常に特殊なシナリオでは、ZSL / FSLが新たな機会を開く。
本稿では,GitHubリポジトリからテキストコンテンツ内のデータセットやソフトウェアを自動的に検出するシナリオにおいて,LLM(Large Language Models)を活用する可能性について検討する。
本研究は、名前付きエンティティにのみ焦点をあてる既存の手法に対して、URLで表現されるリポジトリやオンラインハブなどのリソースを組み込むことにより、スコープを広げることを目的としている。
この研究では、LLMのデータセットとレポジトリテキスト内のソフトウェア参照を識別する能力を高めるために、さまざまなFSLプロンプト学習アプローチについて検討している。
本稿では,LLMの有効性と学習戦略の分析を通じて,自動エンティティ検出のための高度な言語モデルの可能性について考察する。
関連論文リスト
- Studying and Benchmarking Large Language Models For Log Level Suggestion [49.176736212364496]
大規模言語モデル(LLM)は、様々な領域で研究の焦点となっている。
本稿では,12個のオープンソースLCMのログレベル提案における性能に及ぼす特性と学習パラダイムの影響について検討する。
論文 参考訳(メタデータ) (2024-10-11T03:52:17Z) - Towards Enhancing Linked Data Retrieval in Conversational UIs using Large Language Models [1.3980986259786221]
本稿では,既存のシステムにおけるLarge Language Models(LLM)の統合について検討する。
LLMの高度な自然言語理解機能を活用することで、Webシステム内のRDFエンティティ抽出を改善する。
本手法の評価は,ユーザクエリに対するシステム表現性と応答精度の顕著な向上を示す。
論文 参考訳(メタデータ) (2024-09-24T16:31:33Z) - MLLM-LLaVA-FL: Multimodal Large Language Model Assisted Federated Learning [25.45278447786954]
MLLM-LLaVA-FL(Multimodal Large Language Model Assisted Federated Learning)と呼ばれる新しいフェデレーション学習フレームワークを導入する。
当社のフレームワークは,Webサイトや強力なサーバサイド計算リソースからアクセス可能な,広範かつ未公開のオープンソースデータを活用することに長けています。
論文 参考訳(メタデータ) (2024-09-09T21:04:16Z) - Leveraging Large Language Models for Web Scraping [0.0]
本研究では,言語生成用に設計したRAGモデルに対して,汎用的な高精度なデータスクレイピング手法について検討する。
よりモジュール的で解釈可能な方法で知識をキャプチャするために、私たちは、潜在的な知識検索機能を備えた事前訓練された言語モデルを使用します。
論文 参考訳(メタデータ) (2024-06-12T14:15:15Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Quantitative knowledge retrieval from large language models [4.155711233354597]
大規模言語モデル(LLM)は、説得力のある自然言語配列を生成する能力について広く研究されている。
本稿では,データ解析作業を支援するための定量的知識検索のメカニズムとして,LLMの実現可能性について検討する。
論文 参考訳(メタデータ) (2024-02-12T16:32:37Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Measuring Distributional Shifts in Text: The Advantage of Language
Model-Based Embeddings [11.393822909537796]
実運用における機械学習モデル監視の重要な部分は、入力と出力データのドリフトを測定することである。
大規模言語モデル(LLM)の最近の進歩は、意味的関係を捉える上での有効性を示している。
このような埋め込みを利用してテキストデータの分布変化を測定するクラスタリングに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-04T20:46:48Z) - Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models [75.75038268227554]
Self-Checkerはファクトチェックを容易にするプラグインとプレイモジュールからなるフレームワークである。
このフレームワークは、低リソース環境でファクトチェックシステムを構築するための、高速で効率的な方法を提供する。
論文 参考訳(メタデータ) (2023-05-24T01:46:07Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
近年,事前学習型大規模言語モデル (LLM) は,インコンテキスト学習(in-context learning)として知られる推論時少数ショット学習能力を実現する上で,顕著な効率性を示している。
本研究では,現実のLLMを潜在変数モデルとみなし,ベイズレンズによる文脈内学習現象を考察することを目的とする。
論文 参考訳(メタデータ) (2023-01-27T18:59:01Z) - Reinforced Iterative Knowledge Distillation for Cross-Lingual Named
Entity Recognition [54.92161571089808]
言語間NERは、知識をリッチリソース言語から低リソース言語に転送する。
既存の言語間NERメソッドは、ターゲット言語でリッチなラベル付けされていないデータをうまく利用しない。
半教師付き学習と強化学習のアイデアに基づく新しいアプローチを開発する。
論文 参考訳(メタデータ) (2021-06-01T05:46:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。