論文の概要: Enhancing LLM's Ability to Generate More Repository-Aware Unit Tests Through Precise Contextual Information Injection
- arxiv url: http://arxiv.org/abs/2501.07425v1
- Date: Mon, 13 Jan 2025 15:43:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:27:32.725891
- Title: Enhancing LLM's Ability to Generate More Repository-Aware Unit Tests Through Precise Contextual Information Injection
- Title(参考訳): 精密な文脈情報注入によるLLMのリポジトリ・アウェア・ユニット・テスト生成能力の向上
- Authors: Xin Yin, Chao Ni, Xinrui Li, Liushan Chen, Guojun Ma, Xiaohu Yang,
- Abstract要約: プロンプトエンジニアリングによって導かれる大規模言語モデル(LLM)は、幅広いタスクを扱う能力に注目を集めている。
LLMは、プロジェクトのグローバルな文脈に対する認識の欠如により、焦点メソッドや関数の単体テストを生成する際に幻覚を示す可能性がある。
我々は,レポジトリ対応の単体テストを生成するLLMの能力を向上するRATesterを提案する。
- 参考スコア(独自算出の注目度): 4.367526927436771
- License:
- Abstract: Though many learning-based approaches have been proposed for unit test generation and achieved remarkable performance, they still have limitations in relying on task-specific datasets. Recently, Large Language Models (LLMs) guided by prompt engineering have gained attention for their ability to handle a broad range of tasks, including unit test generation. Despite their success, LLMs may exhibit hallucinations when generating unit tests for focal methods or functions due to their lack of awareness regarding the project's global context. These hallucinations may manifest as calls to non-existent methods, as well as incorrect parameters or return values, such as mismatched parameter types or numbers. While many studies have explored the role of context, they often extract fixed patterns of context for different models and focal methods, which may not be suitable for all generation processes (e.g., excessive irrelevant context could lead to redundancy, preventing the model from focusing on essential information). To overcome this limitation, we propose RATester, which enhances the LLM's ability to generate more repository-aware unit tests through global contextual information injection. To equip LLMs with global knowledge similar to that of human testers, we integrate the language server gopls, which provides essential features (e.g., definition lookup) to assist the LLM. When RATester encounters an unfamiliar identifier (e.g., an unfamiliar struct name), it first leverages gopls to fetch relevant definitions and documentation comments, and then uses this global knowledge to guide the LLM. By utilizing gopls, RATester enriches the LLM's knowledge of the project's global context, thereby reducing hallucinations during unit test generation.
- Abstract(参考訳): 単体テスト生成のための多くの学習ベースのアプローチが提案され、優れたパフォーマンスを達成したが、それでもタスク固有のデータセットに依存する制限がある。
近年,大規模言語モデル (LLM) は, 単体テスト生成を含む幅広いタスクを扱う能力に注目が集まっている。
成功にもかかわらず、LLMは、プロジェクトのグローバルな文脈に対する認識の欠如により、焦点メソッドや機能に対する単体テストを生成する際に幻覚を示す可能性がある。
これらの幻覚は、ミスマッチしたパラメータタイプや数値のような不正なパラメータや戻り値と同様に、既存のメソッドへの呼び出しとして現れる。
多くの研究が文脈の役割を探求しているが、それらは異なるモデルや焦点の方法に対する固定されたコンテキストパターンを抽出することが多く、これは全ての世代プロセスに適さない(例えば、過剰な無関係なコンテキストは冗長性をもたらし、モデルが必須情報に焦点を合わせないようにする)。
この制限を克服するため,グローバルなコンテキスト情報注入によってLLMがより多くのリポジトリ対応単体テストを生成する能力を向上するRATesterを提案する。
LLMのグローバルな知識を人間のテスタと同じようなものにするために,言語サーバのgoplsを統合して,LLMを支援する上で不可欠な機能(例えば定義ルックアップ)を提供する。
RATesterが不慣れな識別子(例:不慣れな構造名)に遭遇すると、まずgoplsを利用して関連する定義やドキュメントのコメントを取得し、それからこのグローバルな知識を使ってLLMをガイドします。
goplsを利用することで、RATesterはプロジェクトのグローバルコンテキストに関するLLMの知識を豊かにすることで、単体テスト生成時の幻覚を減少させる。
関連論文リスト
- On the Evaluation of Large Language Models in Unit Test Generation [16.447000441006814]
単体テストは、ソフトウェアコンポーネントの正しさを検証するために、ソフトウェア開発において不可欠な活動である。
LLM(Large Language Models)の出現は、ユニットテスト生成を自動化するための新しい方向性を提供する。
論文 参考訳(メタデータ) (2024-06-26T08:57:03Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Detecting Hallucinations in Large Language Model Generation: A Token Probability Approach [0.0]
LLM(Large Language Models)は、幻覚と呼ばれる不正確な出力を生成する。
本稿では,トークンから得られる4つの数値的特徴と,他の評価者から得られる語彙的確率を用いた教師付き学習手法を提案する。
この方法は有望な結果をもたらし、3つの異なるベンチマークで複数のタスクで最先端の結果を上回る。
論文 参考訳(メタデータ) (2024-05-30T03:00:47Z) - Peering into the Mind of Language Models: An Approach for Attribution in Contextual Question Answering [9.86691461253151]
大規模言語モデル(LLM)の隠れ状態表現を利用した文脈質問応答における帰属手法を提案する。
提案手法は,より詳細な属性を提供し,生成した回答の質を保ちながら,広範囲なモデル再訓練および検索モデルオーバーヘッドの必要性を回避している。
本稿では,LLM世代に対するトークンレベルのアノテーションを文脈質問応答設定に有する属性データセットであるVerifiability-granularを提案する。
論文 参考訳(メタデータ) (2024-05-28T09:12:44Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models [75.75038268227554]
Self-Checkerはファクトチェックを容易にするプラグインとプレイモジュールからなるフレームワークである。
このフレームワークは、低リソース環境でファクトチェックシステムを構築するための、高速で効率的な方法を提供する。
論文 参考訳(メタデータ) (2023-05-24T01:46:07Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。