Roadmap on Atomic-scale Semiconductor Devices
- URL: http://arxiv.org/abs/2501.04535v2
- Date: Wed, 22 Jan 2025 11:48:53 GMT
- Title: Roadmap on Atomic-scale Semiconductor Devices
- Authors: Steven R. Schofield, Andrew J. Fisher, Eran Ginossar, Joseph W. Lyding, Richard Silver, Fan Fei, Pradeep Namboodiri, Jonathan Wyrick, M. G. Masteghin, D. C. Cox, B. N. Murdin, S. K Clowes, Joris G. Keizer, Michelle Y. Simmons, Holly G. Stemp, Andrea Morello, Benoit Voisin, Sven Rogge, Robert A. Wolkow, Lucian Livadaru, Jason Pitters, Taylor J. Z. Stock, Neil J. Curson, Robert E. Butera, Tatiana V. Pavlova, A. M. Jakob, D. Spemann, P. Räcke, F. Schmidt-Kaler, D. N. Jamieson, Utkarsh Pratiush, Gerd Duscher, Sergei V. Kalinin, Dimitrios Kazazis, Procopios Constantinou, Gabriel Aeppli, Yasin Ekinci, James H. G. Owen, Emma Fowler, S. O. Reza Moheimani, John N. Randall, Shashank Misra, Jeffrey Ivie, Christopher R. Allemang, Evan M. Anderson, Ezra Bussmann, Quinn Campbell, Xujiao Gao, Tzu-Ming Lu, Scott W. Schmucker,
- Abstract summary: Spin states in semiconductors provide exceptionally stable and noise-resistant environments for qubits.
The proposal to use nuclear and electronic spins of donor atoms in silicon was introduced by Kane in 1998.
This article reviews the advancements in the 25 years since Kane's proposal.
- Score: 1.479299092942778
- License:
- Abstract: Spin states in semiconductors provide exceptionally stable and noise-resistant environments for qubits, positioning them as optimal candidates for reliable quantum computing technologies. The proposal to use nuclear and electronic spins of donor atoms in silicon, introduced by Kane in 1998, sparked a new research field focused on the precise positioning of individual impurity atoms for quantum devices, utilising scanning tunnelling microscopy and ion implantation. This roadmap article reviews the advancements in the 25 years since Kane's proposal, the current challenges, and the future directions in atomic-scale semiconductor device fabrication and measurement. It covers the quest to create a silicon-based quantum computer and expands to include diverse material systems and fabrication techniques, highlighting the potential for a broad range of semiconductor quantum technological applications. Key developments include phosphorus in silicon devices such as single-atom transistors, arrayed few-donor devices, one- and two-qubit gates, three-dimensional architectures, and the development of a toolbox for future quantum integrated circuits. The roadmap also explores new impurity species like arsenic and antimony for enhanced scalability and higher-dimensional spin systems, new chemistry for dopant precursors and lithographic resists, and the potential for germanium-based devices. Emerging methods, such as photon-based lithography and electron beam manipulation, are discussed for their disruptive potential. This roadmap charts the path toward scalable quantum computing and advanced semiconductor quantum technologies, emphasising the critical intersections of experiment, technological development, and theory.
Related papers
- Single-Photon Generation: Materials, Techniques, and the Rydberg Exciton Frontier [0.0]
Single-photon emitters generate individual photons in bursts or streams.
They are paramount in emerging quantum technologies such as quantum key distribution, quantum repeaters, and measurement-based quantum computing.
This review article highlights different material systems with deterministic and controlled single photon generation.
arXiv Detail & Related papers (2024-12-02T14:56:19Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Database of semiconductor point-defect properties for applications in
quantum technologies [54.17256385566032]
We have calculated over 50,000 point defects in various semiconductors including diamond, silicon carbide, and silicon.
We characterize the relevant optical and electronic properties of these defects, including formation energies, spin characteristics, transition dipole moments, zero-phonon lines.
We find 2331 composite defects which are stable in intrinsic silicon, which are then filtered to identify many new optically bright telecom spin qubit candidates and single-photon sources.
arXiv Detail & Related papers (2023-03-28T19:51:08Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - 2022 Roadmap for Materials for Quantum Technologies [0.4642312690754396]
Quantum technologies are poised to move the foundational principles of quantum physics to the forefront of applications.
This roadmap identifies some of the key challenges and provides insights on materials innovations underlying a range of exciting quantum technology frontiers.
arXiv Detail & Related papers (2022-02-15T10:56:22Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Droplet Epitaxy of Semiconductor Nanostructures for Quantum Photonic
Devices [1.0439136407307046]
A key component is a light source, able to provide single or entangled photon pairs.
Semiconductor quantum dots are very attractive, as they can be integrated with other photonic and electronic components in miniaturized chips.
Recent reports on the generation of highly entangled photon pairs, combined with good photon indistinguishability, suggest that DE and LDE QDs may complement (and sometime even outperform) conventional SK InGaAs QDs as quantum emitters.
arXiv Detail & Related papers (2021-03-28T08:55:55Z) - Donor spins in silicon for quantum technologies [0.0]
We describe the use of ion-implanted donor spins in silicon for quantum technologies.
We show how to fabricate and operate single-atom spin qubits in silicon.
We discuss pathways to scale up these qubits to build large quantum processors.
arXiv Detail & Related papers (2020-09-09T02:41:02Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - The germanium quantum information route [2.449694738547425]
We introduce the physics of holes in low-dimensional germanium structures with key insights from a theoretical perspective.
We examine the material science progress underpinning germanium-based planar heterostructures and nanowires.
We conclude by identifying the most promising prospects toward scalable quantum information processing.
arXiv Detail & Related papers (2020-04-17T09:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.