Donor spins in silicon for quantum technologies
- URL: http://arxiv.org/abs/2009.04081v1
- Date: Wed, 9 Sep 2020 02:41:02 GMT
- Title: Donor spins in silicon for quantum technologies
- Authors: Andrea Morello, Jarryd J. Pla, Patrice Bertet, David N. Jamieson
- Abstract summary: We describe the use of ion-implanted donor spins in silicon for quantum technologies.
We show how to fabricate and operate single-atom spin qubits in silicon.
We discuss pathways to scale up these qubits to build large quantum processors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dopant atoms are ubiquitous in semiconductor technologies, providing the
tailored electronic properties that underpin the modern digital information
era. Harnessing the quantum nature of these atomic-scale objects represents a
new and exciting technological revolution. In this article we describe the use
of ion-implanted donor spins in silicon for quantum technologies. We review how
to fabricate and operate single-atom spin qubits in silicon, obtaining some of
the most coherent solid-state qubits, and we discuss pathways to scale up these
qubits to build large quantum processors. Heavier group-V donors with large
nuclear spins display electric quadrupole couplings that enable nuclear
electric resonance, quantum chaos and strain sensing. Donor ensembles can be
coupled to microwave cavities to develop hybrid quantum Turing machines.
Counted, deterministic implantation of single donors, combined with novel
methods for precision placement, will allow the integration of individual
donors spins with industry-standard silicon fabrication processes, making
implanted donors a prime physical platform for the second quantum revolution.
Related papers
- A Quantum Computing Implementation of Nuclear-Electronic Orbital (NEO)
Theory: Towards an Exact pre-Born-Oppenheimer Formulation of Molecular
Quantum Systems [0.0]
We introduce a methodology for the efficient quantum treatment of the electron-nuclear problem on near-term quantum computers.
We generalize the electronic two-qubit tapering scheme to include nuclei by exploiting symmetries inherent in the NEO framework.
arXiv Detail & Related papers (2023-02-15T17:55:15Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Jellybean quantum dots in silicon for qubit coupling and on-chip quantum
chemistry [0.6818394664182874]
Small size and excellent integrability of silicon metal-oxide-semiconductor (SiMOS) quantum dot spin qubits make them an attractive system for mass-manufacturable, scaled-up quantum processors.
This paper investigates the charge and spin characteristics of an elongated quantum dot for the prospects of acting as a qubit-qubit coupler.
arXiv Detail & Related papers (2022-08-08T12:24:46Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Linear and continuous variable spin-wave processing using a
cavity-coupled atomic ensemble [0.0]
We conduct a theoretical analysis of methods to create a high-capacity universal quantum processor and network node.
We describe how to establish linear quantum processing using a scheme in a rubidium-atom system.
We propose to use the spin-wave processor for continuous-variable quantum information processing.
arXiv Detail & Related papers (2021-09-30T16:24:44Z) - Nuclear spin-wave quantum register for a solid state qubit [3.120672897353664]
coherent quantum systems in nuclear spin-rich hosts enables exploration of a much broader range of materials for quantum information applications.
We develop a robust quantum control protocol to manipulate the multi-level nuclear spin states of neighbouring 51V5+ lattice ions.
Our platform is deterministic and reproducible, ensuring identical quantum registers for all 171Yb qubits.
arXiv Detail & Related papers (2021-08-29T00:27:01Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z) - The germanium quantum information route [2.449694738547425]
We introduce the physics of holes in low-dimensional germanium structures with key insights from a theoretical perspective.
We examine the material science progress underpinning germanium-based planar heterostructures and nanowires.
We conclude by identifying the most promising prospects toward scalable quantum information processing.
arXiv Detail & Related papers (2020-04-17T09:15:36Z) - The limit of spin lifetime in solid-state electronic spins [77.34726150561087]
We provide a complete first-principles picture of spin relaxation that includes up to two-phonon processes.
We study a vanadium-based molecular qubit and reveal that the spin lifetime at high temperature is limited by Raman processes.
arXiv Detail & Related papers (2020-04-08T14:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.