論文の概要: A 65 nm Bayesian Neural Network Accelerator with 360 fJ/Sample In-Word GRNG for AI Uncertainty Estimation
- arxiv url: http://arxiv.org/abs/2501.04577v2
- Date: Wed, 22 Jan 2025 19:28:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:56:32.999639
- Title: A 65 nm Bayesian Neural Network Accelerator with 360 fJ/Sample In-Word GRNG for AI Uncertainty Estimation
- Title(参考訳): 360 fJ/Sample In-Word GRNGを用いた65nmベイズ型ニューラルネットワーク加速器によるAI不確かさ推定
- Authors: Zephan M. Enciso, Boyang Cheng, Likai Pei, Jianbo Liu, Steven Davis, Michael Niemier, Ningyuan Cao,
- Abstract要約: メモリワードに直接360 fJ/Sample Gaussian RNGを統合するASICを提案する。
この統合により、RNGオーバーヘッドを低減し、BNNの完全な並列計算インメモリ操作を可能にする。
プロトタイプチップは5.12GSa/sのRNGスループットと102GOp/sのニューラルネットワークスループットを実現し、0.45mm2を占有する。
- 参考スコア(独自算出の注目度): 4.828223001507891
- License:
- Abstract: Uncertainty estimation is an indispensable capability for AI-enabled, safety-critical applications, e.g. autonomous vehicles or medical diagnosis. Bayesian neural networks (BNNs) use Bayesian statistics to provide both classification predictions and uncertainty estimation, but they suffer from high computational overhead associated with random number generation and repeated sample iterations. Furthermore, BNNs are not immediately amenable to acceleration through compute-in-memory architectures due to the frequent memory writes necessary after each RNG operation. To address these challenges, we present an ASIC that integrates 360 fJ/Sample Gaussian RNG directly into the SRAM memory words. This integration reduces RNG overhead and enables fully-parallel compute-in-memory operations for BNNs. The prototype chip achieves 5.12 GSa/s RNG throughput and 102 GOp/s neural network throughput while occupying 0.45 mm2, bringing AI uncertainty estimation to edge computation.
- Abstract(参考訳): 不確実性推定は、AI対応で安全クリティカルなアプリケーション、例えば自動運転車や医療診断に欠かせない能力である。
ベイジアンニューラルネットワーク(BNN)は、分類予測と不確実性推定の両方を提供するためにベイジアン統計を用いるが、乱数生成と繰り返しサンプル繰り返しに関連する高い計算オーバーヘッドに悩まされる。
さらに、BNNは、各RNG操作後に必要となる頻繁なメモリ書き込みのため、計算メモリアーキテクチャによるアクセラレーションに即座に対応できない。
これらの課題に対処するために,360 fJ/Sample Gaussian RNGを直接SRAMメモリワードに統合するASICを提案する。
この統合により、RNGオーバーヘッドを低減し、BNNの完全な並列計算インメモリ操作を可能にする。
プロトタイプチップは5.12 GSa/s RNGスループットと102 GOp/sニューラルネットワークスループットを実現し、0.45 mm2を占有し、エッジ計算にAIの不確実性推定をもたらす。
関連論文リスト
- Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AIモデルは、エネルギー消費と環境持続可能性に前例のない課題を提示する。
有望な解決策の1つは、アナログコンピューティングを再考することである。
ここでは、構造的塑性に着想を得たエッジプルーニングを用いたユニバーサルソリューション、ソフトウェア・ハードウエアの共設計について報告する。
論文 参考訳(メタデータ) (2023-11-13T08:59:01Z) - Efficient Privacy-Preserving Convolutional Spiking Neural Networks with
FHE [1.437446768735628]
ホモモルフィック暗号化(FHE)は、プライバシ保護計算の鍵となる技術である。
FHEは連続非ポリノミカル関数の処理に制限がある。
準同型SNNのためのFHE-DiCSNNというフレームワークを提案する。
FHE-DiCSNNの精度は97.94%で、元のネットワークの精度98.47%に比べて0.53%しか失われていない。
論文 参考訳(メタデータ) (2023-09-16T15:37:18Z) - Quantized Neural Networks for Low-Precision Accumulation with Guaranteed
Overflow Avoidance [68.8204255655161]
本稿では,推定時のアキュムレータの精度を下げる際に,数値オーバーフローを回避する量子化学習アルゴリズムを提案する。
本手法は,浮動小数点点ベースラインに対するモデル精度を維持しつつ,アキュムレータの精度を低減できることを示す。
論文 参考訳(メタデータ) (2023-01-31T02:46:57Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Binary Single-dimensional Convolutional Neural Network for Seizure
Prediction [4.42106872060105]
てんかん発作予測のための2次元畳み込みニューラルネットワーク(BSDCNN)を提案する。
BSDCNNは1D畳み込みカーネルを使用して予測性能を向上させる。
曲線、感度、誤予測率は0.915、89.26%、0.117/h、0.970、94.69%、0.095/hに達する。
論文 参考訳(メタデータ) (2022-06-08T09:27:37Z) - A Simple Approach to Improve Single-Model Deep Uncertainty via
Distance-Awareness [33.09831377640498]
本研究では,1つの決定論的表現に基づく1つのネットワークの不確実性向上手法について検討する。
本稿では,現代のDNNにおける距離認識能力を向上させる簡易な手法として,スペクトル正規化ニューラルガウス過程(SNGP)を提案する。
ビジョンと言語理解のベンチマークスイートでは、SNGPは予測、キャリブレーション、ドメイン外検出において、他の単一モデルアプローチよりも優れている。
論文 参考訳(メタデータ) (2022-05-01T05:46:13Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
我々は,複雑なコンピュータビジョンアーキテクチャに適した効率的な深部BNNを目指している。
可変オートエンコーダ(VAE)を利用して、各ネットワーク層におけるパラメータの相互作用と潜在分布を学習する。
我々のアプローチであるLatent-Posterior BNN(LP-BNN)は、最近のBatchEnsemble法と互換性があり、高い効率(トレーニングとテストの両方における計算とメモリ)のアンサンブルをもたらす。
論文 参考訳(メタデータ) (2020-12-04T19:50:09Z) - Bayesian Neural Networks at Scale: A Performance Analysis and Pruning
Study [2.3605348648054463]
本研究は,BNNを大規模にトレーニングする際の課題に対処するために,分散トレーニングを用いた高性能コンピューティングの利用について検討する。
我々は,Cray-XC40クラスタ上でのVGG-16とResnet-18モデルのトレーニング性能とスケーラビリティの比較を行った。
論文 参考訳(メタデータ) (2020-05-23T23:15:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。