Logical quantum processor based on reconfigurable atom arrays
- URL: http://arxiv.org/abs/2312.03982v1
- Date: Thu, 7 Dec 2023 01:54:45 GMT
- Title: Logical quantum processor based on reconfigurable atom arrays
- Authors: Dolev Bluvstein, Simon J. Evered, Alexandra A. Geim, Sophie H. Li,
Hengyun Zhou, Tom Manovitz, Sepehr Ebadi, Madelyn Cain, Marcin Kalinowski,
Dominik Hangleiter, J. Pablo Bonilla Ataides, Nishad Maskara, Iris Cong, Xun
Gao, Pedro Sales Rodriguez, Thomas Karolyshyn, Giulia Semeghini, Michael J.
Gullans, Markus Greiner, Vladan Vuletic, Mikhail D. Lukin
- Abstract summary: We report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits.
Results herald the advent of early error-corrected quantum computation.
- Score: 27.489364850707926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Suppressing errors is the central challenge for useful quantum computing,
requiring quantum error correction for large-scale processing. However, the
overhead in the realization of error-corrected ``logical'' qubits, where
information is encoded across many physical qubits for redundancy, poses
significant challenges to large-scale logical quantum computing. Here we report
the realization of a programmable quantum processor based on encoded logical
qubits operating with up to 280 physical qubits. Utilizing logical-level
control and a zoned architecture in reconfigurable neutral atom arrays, our
system combines high two-qubit gate fidelities, arbitrary connectivity, as well
as fully programmable single-qubit rotations and mid-circuit readout. Operating
this logical processor with various types of encodings, we demonstrate
improvement of a two-qubit logic gate by scaling surface code distance from d=3
to d=7, preparation of color code qubits with break-even fidelities,
fault-tolerant creation of logical GHZ states and feedforward entanglement
teleportation, as well as operation of 40 color code qubits. Finally, using
three-dimensional [[8,3,2]] code blocks, we realize computationally complex
sampling circuits with up to 48 logical qubits entangled with hypercube
connectivity with 228 logical two-qubit gates and 48 logical CCZ gates. We find
that this logical encoding substantially improves algorithmic performance with
error detection, outperforming physical qubit fidelities at both cross-entropy
benchmarking and quantum simulations of fast scrambling. These results herald
the advent of early error-corrected quantum computation and chart a path toward
large-scale logical processors.
Related papers
- Realizing Lattice Surgery on Two Distance-Three Repetition Codes with Superconducting Qubits [31.25958618453706]
We demonstrate lattice surgery between two distance-three repetition-code qubits by splitting a single distance-three surface-code qubit.
We achieve an improvement in the value of the decoded $ZZ$ logical two-qubit observable compared to a similar non-encoded circuit.
arXiv Detail & Related papers (2025-01-08T16:49:27Z) - Experimental Demonstration of Logical Magic State Distillation [62.77974948443222]
We present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer.
Our approach makes use of a dynamically reconfigurable architecture to encode and perform quantum operations on many logical qubits in parallel.
arXiv Detail & Related papers (2024-12-19T18:38:46Z) - Scaling and logic in the color code on a superconducting quantum processor [109.61104855764401]
We present a demonstration of the color code on a superconducting processor, achieving logical error suppression and performing logical operations.
We inject magic states, a key resource for universal computation, achieving fidelities exceeding 99% with post-selection.
This work establishes the color code as a compelling research direction to realize fault-tolerant quantum computation on superconducting processors.
arXiv Detail & Related papers (2024-12-18T19:00:05Z) - Transversal CNOT gate with multi-cycle error correction [1.7359033750147501]
A scalable and programmable quantum computer holds the potential to solve computationally intensive tasks that computers cannot accomplish within a reasonable time frame, achieving quantum advantage.
The vulnerability of the current generation of quantum processors to errors poses a significant challenge towards executing complex and deep quantum circuits required for practical problems.
Our work establishes the feasibility of employing logical CNOT gates alongside error detection on a superconductor-based processor using current generation quantum hardware.
arXiv Detail & Related papers (2024-06-18T04:50:15Z) - Demonstrating a universal logical gate set in error-detecting surface codes on a superconducting quantum processor [13.391691829693226]
We experimentally implement a logical CNOT gate along with arbitrary single-qubit rotation gates on distance-2 surface codes using the superconducting quantum processor Wuitkong.
We fault-tolerantly prepare logical Bell states and observe a violation of CHSH inequality, confirming the entanglement between logical qubits.
The demonstration of a universal logical gate set and the entangled logical states highlights significant aspects of FTQC on superconducting quantum processors.
arXiv Detail & Related papers (2024-05-15T02:04:34Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Protecting Expressive Circuits with a Quantum Error Detection Code [0.0]
We develop a quantum error detection code for implementations on existing trapped-ion computers.
By encoding $k$ logical qubits into $k+2$ physical qubits, this code presents fault-tolerant state initialisation and syndrome measurement circuits.
arXiv Detail & Related papers (2022-11-12T16:46:35Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Entangling logical qubits with lattice surgery [47.037230560588604]
We show the experimental realization of lattice surgery between two topologically encoded qubits in a 10-qubit ion trap quantum information processor.
In particular, we demonstrate entanglement between two logical qubits and we implement logical state teleportation.
arXiv Detail & Related papers (2020-06-04T18:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.