SNR-EQ-JSCC: Joint Source-Channel Coding with SNR-Based Embedding and Query
- URL: http://arxiv.org/abs/2501.04732v1
- Date: Tue, 07 Jan 2025 02:31:04 GMT
- Title: SNR-EQ-JSCC: Joint Source-Channel Coding with SNR-Based Embedding and Query
- Authors: Hongwei Zhang, Meixia Tao,
- Abstract summary: We propose a lightweight channel-adaptive semantic coding architecture called SNR-EQ-JSCC.
It is built upon the generic Transformer model and achieves channel adaptation (CA) by Embedding the signal-to-noise ratio (SNR) into the attention blocks.
Considering that instantaneous SNR feedback may be imperfect, we propose an alternative method that uses only the average SNR.
- Score: 40.61935046452048
- License:
- Abstract: Coping with the impact of dynamic channels is a critical issue in joint source-channel coding (JSCC)-based semantic communication systems. In this paper, we propose a lightweight channel-adaptive semantic coding architecture called SNR-EQ-JSCC. It is built upon the generic Transformer model and achieves channel adaptation (CA) by Embedding the signal-to-noise ratio (SNR) into the attention blocks and dynamically adjusting attention scores through channel-adaptive Queries. Meanwhile, penalty terms are introduced in the loss function to stabilize the training process. Considering that instantaneous SNR feedback may be imperfect, we propose an alternative method that uses only the average SNR, which requires no retraining of SNR-EQ-JSCC. Simulation results conducted on image transmission demonstrate that the proposed SNR-EQJSCC outperforms the state-of-the-art SwinJSCC in peak signal-to-noise ratio (PSNR) and perception metrics while only requiring 0.05% of the storage overhead and 6.38% of the computational complexity for CA. Moreover, the channel-adaptive query method demonstrates significant improvements in perception metrics. When instantaneous SNR feedback is imperfect, SNR-EQ-JSCC using only the average SNR still surpasses baseline schemes.
Related papers
- Neural Network-based Vehicular Channel Estimation Performance: Effect of Noise in the Training Set [0.5530212768657544]
Vehicular communication systems face significant challenges due to high mobility and rapidly changing environments.
To address these challenges, neural network (NN)-based channel estimation methods have been suggested.
This study examines the effectiveness of training NN-based channel estimators on mixed SNR datasets.
arXiv Detail & Related papers (2025-02-05T09:29:01Z) - Semantic Successive Refinement: A Generative AI-aided Semantic Communication Framework [27.524671767937512]
We introduce a novel Generative AI Semantic Communication (GSC) system for single-user scenarios.
At the transmitter end, it employs a joint source-channel coding mechanism based on the Swin Transformer for efficient semantic feature extraction.
At the receiver end, an advanced Diffusion Model (DM) reconstructs high-quality images from degraded signals, enhancing perceptual details.
arXiv Detail & Related papers (2024-07-31T06:08:51Z) - A Comparative Study of Deep Learning and Iterative Algorithms for Joint Channel Estimation and Signal Detection in OFDM Systems [11.190815358585137]
Joint channel estimation and signal detection is crucial in frequency division multiplexing systems.
Traditional algorithms perform poorly in low signal-to-noise ratio (SNR) scenarios.
Deep learning (DL) methods have been investigated, but concerns regarding computational expense and lack of validation in low-SNR settings remain.
arXiv Detail & Related papers (2023-03-07T06:34:04Z) - Deep Reinforcement Learning for IRS Phase Shift Design in
Spatiotemporally Correlated Environments [93.30657979626858]
We propose a deep actor-critic algorithm that accounts for channel correlations and destination motion.
We show that, when channels aretemporally correlated, the inclusion of the SNR in the state representation with function approximation in ways that inhibit convergence.
arXiv Detail & Related papers (2022-11-02T22:07:36Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Sequence Transduction with Graph-based Supervision [96.04967815520193]
We present a new transducer objective function that generalizes the RNN-T loss to accept a graph representation of the labels.
We demonstrate that transducer-based ASR with CTC-like lattice achieves better results compared to standard RNN-T.
arXiv Detail & Related papers (2021-11-01T21:51:42Z) - SNR-adaptive deep joint source-channel coding for wireless image
transmission [14.793908797250989]
An autoencoder-based novel deep joint source-channel coding scheme is proposed in this paper.
The decoder can estimate the signal-to-noise ratio (SNR) and use it to adaptively decode the transmitted image.
arXiv Detail & Related papers (2021-01-30T10:30:04Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z) - Millimeter Wave Communications with an Intelligent Reflector:
Performance Optimization and Distributional Reinforcement Learning [119.97450366894718]
A novel framework is proposed to optimize the downlink multi-user communication of a millimeter wave base station.
A channel estimation approach is developed to measure the channel state information (CSI) in real-time.
A distributional reinforcement learning (DRL) approach is proposed to learn the optimal IR reflection and maximize the expectation of downlink capacity.
arXiv Detail & Related papers (2020-02-24T22:18:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.