SpecTf: Transformers Enable Data-Driven Imaging Spectroscopy Cloud Detection
- URL: http://arxiv.org/abs/2501.04916v1
- Date: Thu, 09 Jan 2025 02:14:12 GMT
- Title: SpecTf: Transformers Enable Data-Driven Imaging Spectroscopy Cloud Detection
- Authors: Jake H. Lee, Michael Kiper, David R. Thompson, Philip G. Brodrick,
- Abstract summary: SpecTf is a spectroscopy-specific deep learning architecture that performs cloud detection using only spectral information.<n>By treating spectral measurements as sequences rather than image channels, SpecTf learns fundamental physical relationships without relying on spatial context.<n>We present SpecTf's potential for cross-instrument generalization by applying it to a different instrument on a different platform without modifications.
- Score: 0.7139158700911061
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current and upcoming generations of visible-shortwave infrared (VSWIR) imaging spectrometers promise unprecedented capacity to quantify Earth System processes across the globe. However, reliable cloud screening remains a fundamental challenge for these instruments, where traditional spatial and temporal approaches are limited by cloud variability and limited temporal coverage. The Spectroscopic Transformer (SpecTf) addresses these challenges with a spectroscopy-specific deep learning architecture that performs cloud detection using only spectral information (no spatial or temporal data are required). By treating spectral measurements as sequences rather than image channels, SpecTf learns fundamental physical relationships without relying on spatial context. Our experiments demonstrate that SpecTf significantly outperforms the current baseline approach implemented for the EMIT instrument, and performs comparably with other machine learning methods with orders of magnitude fewer learned parameters. Critically, we demonstrate SpecTf's inherent interpretability through its attention mechanism, revealing physically meaningful spectral features the model has learned. Finally, we present SpecTf's potential for cross-instrument generalization by applying it to a different instrument on a different platform without modifications, opening the door to instrument agnostic data driven algorithms for future imaging spectroscopy tasks.
Related papers
- CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis [75.25966323298003]
Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding.
variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies.
We introduce $textbfCARL$, a model for $textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$ across RGB, multispectral, and hyperspectral imaging modalities.
arXiv Detail & Related papers (2025-04-27T13:06:40Z) - Hyperspectral Vision Transformers for Greenhouse Gas Estimations from Space [6.559887989252469]
This study proposes a spectral transformer model that synthesizes hyperspectral data from multispectral inputs.
The model is pre-trained via a band-wise masked auto-encoder and subsequently fine-tuned on aligned multispectral-hyperspectral image pairs.
The resulting synthetic hyperspectral data retain the spatial and temporal benefits of multispectral imagery and improve GHG prediction accuracy.
arXiv Detail & Related papers (2025-04-23T16:19:42Z) - Hyperspectral Dataset and Deep Learning methods for Waste from Electric and Electronic Equipment Identification (WEEE) [0.0]
We evaluate the performance of diverse deep learning architectures for hyperspectral image segmentation.
Results show that incorporating spatial information alongside spectral data leads to improved segmentation results.
We contribute to the field by cleaning and publicly releasing the Tecnalia WEEE Hyperspectral dataset.
arXiv Detail & Related papers (2024-07-05T13:45:11Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - SpecSTG: A Fast Spectral Diffusion Framework for Probabilistic Spatio-Temporal Traffic Forecasting [29.55810183838032]
SpecSTG is a novel spectral diffusion framework for traffic-temporal graph learning.
It generates the Fourier representation of future time series, transforming the learning process into the spectral domain enriched with spatial information.
Compared with state-of-the-arts, SpecSTG achieves up to 8% improvements on point estimations and up 0.78% improvements on quantifying future uncertainties.
arXiv Detail & Related papers (2024-01-16T05:23:34Z) - SpectralGPT: Spectral Remote Sensing Foundation Model [60.023956954916414]
A universal RS foundation model, named SpectralGPT, is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT)
Compared to existing foundation models, SpectralGPT accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS big data.
Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS big data applications within the field of geoscience.
arXiv Detail & Related papers (2023-11-13T07:09:30Z) - MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral
Reconstruction [148.26195175240923]
We propose a novel Transformer-based method, Multi-stage Spectral-wise Transformer (MST++) for efficient spectral reconstruction.
In the NTIRE 2022 Spectral Reconstruction Challenge, our approach won the First place.
arXiv Detail & Related papers (2022-04-17T02:39:32Z) - Explainable Predictive Modeling for Limited Spectral Data [0.0]
We introduce applying recent explainable AI techniques to interpret the prediction outcomes of high-dimensional and limited spectral data.
Due to instrument resolution limitations, pinpointing important regions of the spectroscopy data creates a pathway to optimize the data collection process.
We specifically design three different scenarios to ensure that the evaluation of ML models is robust for the real-time practice.
arXiv Detail & Related papers (2022-02-09T15:46:17Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
Hyperspectral image (HSI) reconstruction aims to recover the 3D spatial-spectral signal from a 2D measurement.
Modeling the inter-spectra interactions is beneficial for HSI reconstruction.
Mask-guided Spectral-wise Transformer (MST) proposes a novel framework for HSI reconstruction.
arXiv Detail & Related papers (2021-11-15T16:59:48Z) - Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in
Frequency Domain [88.7339322596758]
We present a novel Spatial-Phase Shallow Learning (SPSL) method, which combines spatial image and phase spectrum to capture the up-sampling artifacts of face forgery.
SPSL can achieve the state-of-the-art performance on cross-datasets evaluation as well as multi-class classification and obtain comparable results on single dataset evaluation.
arXiv Detail & Related papers (2021-03-02T16:45:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.