Improving the U-Net Configuration for Automated Delineation of Head and Neck Cancer on MRI
- URL: http://arxiv.org/abs/2501.05120v1
- Date: Thu, 09 Jan 2025 10:22:35 GMT
- Title: Improving the U-Net Configuration for Automated Delineation of Head and Neck Cancer on MRI
- Authors: Andrei Iantsen,
- Abstract summary: Tumor volume segmentation on MRI is a challenging and time-consuming process.
This work presents an approach to automated delineation of head and neck tumors on MRI scans.
The focus of this research was to propose improvements to the configuration commonly used in medical segmentation tasks.
- Score: 0.0
- License:
- Abstract: Tumor volume segmentation on MRI is a challenging and time-consuming process that is performed manually in typical clinical settings. This work presents an approach to automated delineation of head and neck tumors on MRI scans, developed in the context of the MICCAI Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) 2024 Challenge. Rather than designing a new, task-specific convolutional neural network, the focus of this research was to propose improvements to the configuration commonly used in medical segmentation tasks, relying solely on the traditional U-Net architecture. The empirical results presented in this article suggest the superiority of patch-wise normalization used for both training and sliding window inference. They also indicate that the performance of segmentation models can be enhanced by applying a scheduled data augmentation policy during training. Finally, it is shown that a small improvement in quality can be achieved by using Gaussian weighting to combine predictions for individual patches during sliding window inference. The model with the best configuration obtained an aggregated Dice Similarity Coefficient (DSCagg) of 0.749 in Task 1 and 0.710 in Task 2 on five cross-validation folds. The ensemble of five models (one best model per validation fold) showed consistent results on a private test set of 50 patients with an DSCagg of 0.752 in Task 1 and 0.718 in Task 2 (team name: andrei.iantsen). The source code and model weights are freely available at www.github.com/iantsen/hntsmrg.
Related papers
- Deep Learning for Longitudinal Gross Tumor Volume Segmentation in MRI-Guided Adaptive Radiotherapy for Head and Neck Cancer [4.358109501717511]
Accurate segmentation of gross tumor volume (GTV) is essential for effective MRI-guided adaptive radiotherapy (MRgART) in head and neck cancer.
In this study, we tackled the challenges of both pre-radiotherapy (pre-RT) and mid-radiotherapy (mid-RT) tumor volume segmentation.
We presented a collection of DL models that could facilitate GTV segmentation in MRgART, offering the potential to streamline radiation oncology.
arXiv Detail & Related papers (2024-12-01T03:57:18Z) - Handling Geometric Domain Shifts in Semantic Segmentation of Surgical RGB and Hyperspectral Images [67.66644395272075]
We present first analysis of state-of-the-art semantic segmentation models when faced with geometric out-of-distribution data.
We propose an augmentation technique called "Organ Transplantation" to enhance generalizability.
Our augmentation technique improves SOA model performance by up to 67 % for RGB data and 90 % for HSI data, achieving performance at the level of in-distribution performance on real OOD test data.
arXiv Detail & Related papers (2024-08-27T19:13:15Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Re-DiffiNet: Modeling discrepancies in tumor segmentation using diffusion models [1.7995110894203483]
We introduce a framework called Re-Diffinet for modeling the discrepancy between the outputs of a segmentation model like U-Net and the ground truth.
The results show an average improvement of 0.55% in the Dice score and 16.28% in HD95 from cross-validation over 5-folds.
arXiv Detail & Related papers (2024-02-12T01:03:39Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - A quality assurance framework for real-time monitoring of deep learning
segmentation models in radiotherapy [3.5752677591512487]
This work uses cardiac substructure segmentation as an example task to establish a quality assurance framework.
A benchmark dataset consisting of Computed Tomography (CT) images along with manual cardiac delineations of 241 patients was collected.
An image domain shift detector was developed by utilizing a trained Denoising autoencoder (DAE) and two hand-engineered features.
A regression model was trained to predict the per-patient segmentation accuracy, measured by Dice similarity coefficient (DSC)
arXiv Detail & Related papers (2023-05-19T14:51:05Z) - Cross-Shaped Windows Transformer with Self-supervised Pretraining for Clinically Significant Prostate Cancer Detection in Bi-parametric MRI [6.930082824262643]
We introduce a novel end-to-end Cross-Shaped windows (CSwin) transformer UNet model, CSwin UNet, to detect clinically significant prostate cancer (csPCa) in prostate bi-parametric MR imaging (bpMRI)
Using a large prostate bpMRI dataset with 1500 patients, we first pretrain CSwin transformer using multi-task self-supervised learning to improve data-efficiency and network generalizability.
Five-fold cross validation shows that self-supervised CSwin UNet achieves 0.888 AUC and 0.545 Average Precision (AP), significantly outperforming four comparable models (Swin U
arXiv Detail & Related papers (2023-04-30T04:40:32Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Semi-Supervised Segmentation of Multi-vendor and Multi-center Cardiac
MRI using Histogram Matching [0.0]
We propose a semi-supervised segmentation setup for leveraging unlabeled data to segment Left-ventricle, Right-ventricle, and Myocardium.
Handling the class imbalanced data issue using dice loss, the enhanced supervised model is able to achieve better dice scores.
The model achieves average dice scores of 0.921, 0.926, and 0.891 for Left-ventricle, Right-ventricle, and Myocardium respectively.
arXiv Detail & Related papers (2023-02-22T08:23:19Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
We propose and investigate several contributions to achieve a parameter-efficient but effective adaptation for semantic segmentation on two medical imaging datasets.
We pre-train this architecture with a dedicated dense self-supervision scheme based on assignments to online generated prototypes.
We demonstrate that the resulting neural network model is able to attenuate the gap between fully fine-tuned and parameter-efficiently adapted models.
arXiv Detail & Related papers (2022-11-16T21:55:05Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
We automate and standardize the task of brain tumor segmentation with U-net like neural networks.
Two independent ensembles of models were trained, and each produced a brain tumor segmentation map.
Our solution achieved a Dice of 0.79, 0.89 and 0.84, as well as Hausdorff 95% of 20.4, 6.7 and 19.5mm on the final test dataset.
arXiv Detail & Related papers (2020-10-30T14:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.