RMTransformer: Accurate Radio Map Construction and Coverage Prediction
- URL: http://arxiv.org/abs/2501.05190v2
- Date: Sat, 11 Jan 2025 07:33:56 GMT
- Title: RMTransformer: Accurate Radio Map Construction and Coverage Prediction
- Authors: Yuxuan Li, Cheng Zhang, Wen Wang, Yongming Huang,
- Abstract summary: This paper introduces a hybrid transformer-convolution model, termed RMTransformer, to enhance the accuracy of radio map prediction.
The proposed model features a multi-scale transformer-based encoder for efficient feature extraction and a convolution-based decoder for precise pixel-level image reconstruction.
- Score: 34.903128282947115
- License:
- Abstract: Radio map, or pathloss map prediction, is a crucial method for wireless network modeling and management. By leveraging deep learning to construct pathloss patterns from geographical maps, an accurate digital replica of the transmission environment could be established with less computational overhead and lower prediction error compared to traditional model-driven techniques. While existing state-of-the-art (SOTA) methods predominantly rely on convolutional architectures, this paper introduces a hybrid transformer-convolution model, termed RMTransformer, to enhance the accuracy of radio map prediction. The proposed model features a multi-scale transformer-based encoder for efficient feature extraction and a convolution-based decoder for precise pixel-level image reconstruction. Simulation results demonstrate that the proposed scheme significantly improves prediction accuracy, and over a 30% reduction in root mean square error (RMSE) is achieved compared to typical SOTA approaches.
Related papers
- Two-Stage Radio Map Construction with Real Environments and Sparse Measurements [11.432502140838867]
A first-predict-then-correct (FPTC) method is proposed by leveraging generative adversarial networks (GANs)
A primary radio map is first predicted by a radio map prediction GAN (RMP-GAN) taking environmental information as input.
Then, the prediction result is corrected by a radio map correction GAN (RMC-GAN) with sparse measurements as guidelines.
Experimental results validate that the proposed FPTC-GANs method achieves the best radio map construction performance.
arXiv Detail & Related papers (2024-10-08T09:15:27Z) - Radio Map Prediction from Aerial Images and Application to Coverage Optimization [46.870065000932016]
We focus on predicting path loss radio maps using convolutional neural networks.
We show that state-of-the-art models developed for existing radio map datasets can be effectively adapted to this task.
We introduce a new model that slightly exceeds the performance of the present state-of-the-art with reduced complexity.
arXiv Detail & Related papers (2024-10-07T09:19:20Z) - Radio Map Estimation -- An Open Dataset with Directive Transmitter
Antennas and Initial Experiments [49.61405888107356]
We release a dataset of simulated path loss radio maps together with realistic city maps from real-world locations and aerial images from open datasources.
Initial experiments regarding model architectures, input feature design and estimation of radio maps from aerial images are presented.
arXiv Detail & Related papers (2024-01-12T14:56:45Z) - Transformer-Based Neural Surrogate for Link-Level Path Loss Prediction
from Variable-Sized Maps [11.327456466796681]
Estimating path loss for a transmitter-receiver location is key to many use-cases including network planning and handover.
We present a transformer-based neural network architecture that enables predicting link-level properties from maps of various dimensions and from sparse measurements.
arXiv Detail & Related papers (2023-10-06T20:17:40Z) - Radar Image Reconstruction from Raw ADC Data using Parametric
Variational Autoencoder with Domain Adaptation [0.0]
We propose a parametrically constrained variational autoencoder, capable of generating the clustered and localized target detections on the range-angle image.
To circumvent the problem of training the proposed neural network on all possible scenarios using real radar data, we propose domain adaptation strategies.
arXiv Detail & Related papers (2022-05-30T16:17:36Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Transformer-based Map Matching Model with Limited Ground-Truth Data
using Transfer-Learning Approach [6.510061176722248]
In many trajectory-based applications, it is necessary to map raw GPS trajectories onto road networks in digital maps.
In this paper, we consider the map-matching task from the data perspective, proposing a deep learning-based map-matching model.
We generate synthetic trajectory data to pre-train the Transformer model and then fine-tune the model with a limited number of ground-truth data.
arXiv Detail & Related papers (2021-08-01T11:51:11Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
We present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction.
Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets.
arXiv Detail & Related papers (2020-10-05T14:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.