論文の概要: ParaRev: Building a dataset for Scientific Paragraph Revision annotated with revision instruction
- arxiv url: http://arxiv.org/abs/2501.05222v1
- Date: Thu, 09 Jan 2025 13:19:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:59:32.404542
- Title: ParaRev: Building a dataset for Scientific Paragraph Revision annotated with revision instruction
- Title(参考訳): ParaRev: 改訂指導を付加したScientific Paragraph Revisionデータセットの構築
- Authors: Léane Jourdan, Nicolas Hernandez, Richard Dufour, Florian Boudin, Akiko Aizawa,
- Abstract要約: 学術テキスト改訂作業における文レベルから段落レベルへのシフトの影響について検討する。
タスクの段落レベルでの定義は、より意味のある変更を可能にし、一般的なものよりも詳細な修正命令によって導かれる。
本実験は, 詳細な指示を用いることで, 一般的な手法と比較して, 自動修正の精度が著しく向上することを示した。
- 参考スコア(独自算出の注目度): 26.64363135181992
- License:
- Abstract: Revision is a crucial step in scientific writing, where authors refine their work to improve clarity, structure, and academic quality. Existing approaches to automated writing assistance often focus on sentence-level revisions, which fail to capture the broader context needed for effective modification. In this paper, we explore the impact of shifting from sentence-level to paragraph-level scope for the task of scientific text revision. The paragraph level definition of the task allows for more meaningful changes, and is guided by detailed revision instructions rather than general ones. To support this task, we introduce ParaRev, the first dataset of revised scientific paragraphs with an evaluation subset manually annotated with revision instructions. Our experiments demonstrate that using detailed instructions significantly improves the quality of automated revisions compared to general approaches, no matter the model or the metric considered.
- Abstract(参考訳): 改訂は科学的執筆において重要なステップであり、著者は明確さ、構造、学術的品質を改善するために研究を洗練させる。
自動筆記支援への既存のアプローチは、しばしば文レベルの修正に焦点を合わせ、効果的な修正に必要なより広い文脈を捉えられなかった。
本稿では,文レベルから段落レベルへのシフトが科学的テキスト改訂作業に与える影響について検討する。
タスクの段落レベルでの定義は、より意味のある変更を可能にし、一般的なものよりも詳細な修正命令によって導かれる。
この課題を支援するために,改訂された科学論文の最初のデータセットであるParaRevを手動で注釈付けした評価サブセットで紹介する。
実験により,詳細な指示を用いた場合,モデルや計量が考慮された場合でも,一般的な手法と比較して,自動修正の品質が著しく向上することが示された。
関連論文リスト
- Detecting Document-level Paraphrased Machine Generated Content: Mimicking Human Writing Style and Involving Discourse Features [57.34477506004105]
機械生成コンテンツは、学術プラジャリズムや誤報の拡散といった課題を提起する。
これらの課題を克服するために、新しい方法論とデータセットを導入します。
人間の筆記スタイルをエミュレートするエンコーダデコーダモデルであるMhBARTを提案する。
また,PDTB前処理による談話解析を統合し,構造的特徴を符号化するモデルであるDTransformerを提案する。
論文 参考訳(メタデータ) (2024-12-17T08:47:41Z) - Analysing Zero-Shot Readability-Controlled Sentence Simplification [54.09069745799918]
本研究では,異なる種類の文脈情報が,所望の可読性を持つ文を生成するモデルの能力に与える影響について検討する。
結果から,全ての試験されたモデルは,原文の制限や特徴のため,文の簡略化に苦慮していることがわかった。
実験では、RCTSに合わせたより良い自動評価指標の必要性も強調した。
論文 参考訳(メタデータ) (2024-09-30T12:36:25Z) - Re3: A Holistic Framework and Dataset for Modeling Collaborative Document Revision [62.12545440385489]
共同文書リビジョンを共同で分析するためのフレームワークであるRe3を紹介する。
本稿では,Re3-Sciについて紹介する。Re3-Sciは,その行動と意図に応じて手動でラベル付けされた科学的論文の大規模なコーパスである。
我々は,新しいデータを用いて,学術領域における共同文書改訂に関する実証的研究を行った。
論文 参考訳(メタデータ) (2024-05-31T21:19:09Z) - CASIMIR: A Corpus of Scientific Articles enhanced with Multiple Author-Integrated Revisions [7.503795054002406]
本稿では,学術論文の執筆過程の改訂段階について,原文資料を提案する。
この新しいデータセットはCASIMIRと呼ばれ、OpenReviewの15,646の科学論文の改訂版とピアレビューを含んでいる。
論文 参考訳(メタデータ) (2024-03-01T03:07:32Z) - To Revise or Not to Revise: Learning to Detect Improvable Claims for
Argumentative Writing Support [20.905660642919052]
特定の修正が必要な議論的クレームを特定するための主な課題について検討する。
本稿では,リビジョン距離に基づく新しいサンプリング戦略を提案する。
文脈情報とドメイン知識を用いることで、予測結果をさらに改善できることを示す。
論文 参考訳(メタデータ) (2023-05-26T10:19:54Z) - Improving Iterative Text Revision by Learning Where to Edit from Other
Revision Tasks [11.495407637511878]
反復的テキストリビジョンは文法的誤りの修正、読みやすさの向上や文脈的適切性の向上、文書全体の文構造の再編成によってテキスト品質を改善する。
近年の研究では、人間によるテキストからの反復的な修正プロセスにおいて、様々な種類の編集の理解と分類に焦点が当てられている。
我々は,編集可能なスパンを対応する編集意図で明示的に検出することにより,有用な編集を反復的に生成するエンド・ツー・エンドテキスト・リビジョン・システムの構築を目指している。
論文 参考訳(メタデータ) (2022-12-02T18:10:43Z) - EditEval: An Instruction-Based Benchmark for Text Improvements [73.5918084416016]
編集機能の自動評価のためのインストラクションベース、ベンチマーク、評価スイートであるEditEvalを提示する。
InstructGPTとPEERが最良であることを示す事前学習モデルをいくつか評価するが,ほとんどのベースラインは教師付きSOTA以下である。
我々の分析は、タスクの編集によく使われるメトリクスが必ずしも相関しているとは限らないことを示し、最高の性能を持つプロンプトに対する最適化は、必ずしも異なるモデルに対して強い堅牢性を持つとは限らないことを示唆している。
論文 参考訳(メタデータ) (2022-09-27T12:26:05Z) - Towards Automated Document Revision: Grammatical Error Correction,
Fluency Edits, and Beyond [46.130399041820716]
ACLアンソロジーから採取した学術論文をプロの編集者が改訂する文書改訂コーパスTETRAを導入する。
TETRAの独特性を既存の文書修正コーパスと比較し、微妙な違いであっても、修正後の文書の品質を識別できることを実証する。
論文 参考訳(メタデータ) (2022-05-23T17:37:20Z) - Understanding Iterative Revision from Human-Written Text [10.714872525208385]
IteraTeRは、反復的に修正されたテキストの最初の大規模、複数ドメイン、編集意図の注釈付きコーパスである。
テキストのリビジョンプロセスをよりよく理解し、編集意図と執筆品質の間に重要なつながりを築き上げます。
論文 参考訳(メタデータ) (2022-03-08T01:47:42Z) - Hierarchical Bi-Directional Self-Attention Networks for Paper Review
Rating Recommendation [81.55533657694016]
本稿では,階層型双方向自己注意ネットワークフレームワーク(HabNet)を提案する。
具体的には、文エンコーダ(レベル1)、レビュー内エンコーダ(レベル2)、レビュー間エンコーダ(レベル3)の3つのレベルで、論文レビューの階層構造を利用する。
我々は、最終的な受理決定を行う上で有用な予測者を特定することができ、また、数値的なレビュー評価とレビュアーが伝えるテキストの感情の不整合を発見するのに役立てることができる。
論文 参考訳(メタデータ) (2020-11-02T08:07:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。