Grid Cost Allocation in Peer-to-Peer Electricity Markets: Benchmarking Classical and Quantum Optimization Approaches
- URL: http://arxiv.org/abs/2501.05253v1
- Date: Thu, 09 Jan 2025 14:03:56 GMT
- Title: Grid Cost Allocation in Peer-to-Peer Electricity Markets: Benchmarking Classical and Quantum Optimization Approaches
- Authors: David Bucher, Daniel Porawski, Benedikt Wimmer, Jonas Nüßlein, Corey O'Meara, Giorgio Cortiana, Claudia Linnhoff-Popien,
- Abstract summary: This paper presents a novel optimization approach for allocating grid operation costs in Peer-to-Peer (P2P) electricity markets using Quantum Computing (QC)
We develop a Quadratic Unconstrained Binary Optimization (QUBO) model that matches logical power flows between producer-consumer pairs with the physical power flow to distribute grid usage costs fairly.
The model is evaluated on IEEE test cases with up to 57 nodes, comparing Quantum Annealing (QA), hybrid quantum-classical algorithms, and classical optimization approaches.
- Score: 3.757262277494307
- License:
- Abstract: This paper presents a novel optimization approach for allocating grid operation costs in Peer-to-Peer (P2P) electricity markets using Quantum Computing (QC). We develop a Quadratic Unconstrained Binary Optimization (QUBO) model that matches logical power flows between producer-consumer pairs with the physical power flow to distribute grid usage costs fairly. The model is evaluated on IEEE test cases with up to 57 nodes, comparing Quantum Annealing (QA), hybrid quantum-classical algorithms, and classical optimization approaches. Our results show that while the model effectively allocates grid operation costs, QA performs poorly in comparison despite extensive hyperparameter optimization. The classical branch-and-cut method outperforms all solvers, including classical heuristics, and shows the most advantageous scaling behavior. The findings may suggest that binary least-squares optimization problems may not be suitable candidates for near-term quantum utility.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
We propose a faster digital quantum algorithm for portfolio optimization using the digitized-counterdiabatic quantum optimization (DCQO) paradigm.
Our approach notably reduces the circuit depth requirement of the algorithm and enhances the solution accuracy, making it suitable for current quantum processors.
We experimentally demonstrate the advantages of our protocol using up to 20 qubits on an IonQ trapped-ion quantum computer.
arXiv Detail & Related papers (2023-08-29T17:53:08Z) - Qubit efficient quantum algorithms for the vehicle routing problem on
NISQ processors [48.68474702382697]
Vehicle routing problem with time windows (VRPTW) is a common optimization problem faced within the logistics industry.
In this work, we explore the use of a previously-introduced qubit encoding scheme to reduce the number of binary variables.
arXiv Detail & Related papers (2023-06-14T13:44:35Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
Current quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device.
We propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits.
This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Prog-QAOA.
arXiv Detail & Related papers (2022-09-07T18:01:01Z) - The QAOA with Few Measurements [4.713817702376467]
The Approximate Quantum Optimization Algorithm (QAOA) was originally developed to solve optimization problems.
Fully descriptive benchmarking techniques are often expensive for large numbers of qubits.
Some experimental quantum computing platforms such as neutral atom quantum computers have slow repetition rates.
arXiv Detail & Related papers (2022-05-13T18:42:20Z) - Adapting Quantum Approximation Optimization Algorithm (QAOA) for Unit
Commitment [2.8060379263058794]
We formulate and apply a hybrid quantum-classical algorithm to a power system optimization problem called Unit Commitment.
Our algorithm extends the Quantum Approximation Optimization Algorithm (QAOA) with a classical minimizer in order to support mixed binary optimization.
Our results indicate that classical solvers are effective for our simulated Unit Commitment instances with fewer than 400 power generation units.
arXiv Detail & Related papers (2021-10-25T03:37:34Z) - Lyapunov control-inspired strategies for quantum combinatorial
optimization [0.0]
We provide an expanded description of Lyapunov control-inspired strategies for quantum optimization.
Instead, these strategies utilize feedback from qubit measurements to assign values to the quantum circuit parameters in a deterministic manner.
arXiv Detail & Related papers (2021-08-12T19:47:59Z) - GEO: Enhancing Combinatorial Optimization with Classical and Quantum
Generative Models [62.997667081978825]
We introduce a new framework that leverages machine learning models known as generative models to solve optimization problems.
We focus on a quantum-inspired version of GEO relying on tensor-network Born machines.
We show its superior performance when the goal is to find the best minimum given a fixed budget for the number of function calls.
arXiv Detail & Related papers (2021-01-15T18:18:38Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.