論文の概要: On Fair Ordering and Differential Privacy
- arxiv url: http://arxiv.org/abs/2501.05535v1
- Date: Thu, 09 Jan 2025 19:17:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:25:59.083705
- Title: On Fair Ordering and Differential Privacy
- Title(参考訳): 公正な秩序と差別的プライバシーについて
- Authors: Shir Cohen, Neel Basu, Soumya Basu, Lorenzo Alvisi,
- Abstract要約: ブロックチェーンシステムでは、信頼できる規制に準拠したエコシステムにおいて、公正なトランザクションオーダが不可欠である。
本稿では,これらの特性について検討し,トランザクションオーダリングサービスにおけるアルゴリズムバイアスを排除することを目的とする。
我々は、関連する機能と無関係な機能の観点からトランザクションを特徴付け、その順序は関連するもののみによって決定される必要がある。
- 参考スコア(独自算出の注目度): 2.839269856680852
- License:
- Abstract: In blockchain systems, fair transaction ordering is crucial for a trusted and regulation-compliant economic ecosystem. Unlike traditional State Machine Replication (SMR) systems, which focus solely on liveness and safety, blockchain systems also require a fairness property. This paper examines these properties and aims to eliminate algorithmic bias in transaction ordering services. We build on the notion of equal opportunity. We characterize transactions in terms of relevant and irrelevant features, requiring that the order be determined solely by the relevant ones. Specifically, transactions with identical relevant features should have an equal chance of being ordered before one another. We extend this framework to define a property where the greater the distance in relevant features between transactions, the higher the probability of prioritizing one over the other. We reveal a surprising link between equal opportunity in SMR and Differential Privacy (DP), showing that any DP mechanism can be used to ensure fairness in SMR. This connection not only enhances our understanding of the interplay between privacy and fairness in distributed computing but also opens up new opportunities for designing fair distributed protocols using well-established DP techniques.
- Abstract(参考訳): ブロックチェーンシステムでは、信頼できる規制に準拠した経済エコシステムにおいて、公正なトランザクション注文が不可欠である。
ライブ性と安全性のみを重視した従来のステートマシンレプリケーション(SMR)システムとは異なり、ブロックチェーンシステムは公正性も必要である。
本稿では,これらの特性について検討し,トランザクションオーダリングサービスにおけるアルゴリズムバイアスを排除することを目的とする。
私たちは平等な機会という概念を基礎にしている。
我々は、関連する機能と無関係な機能の観点からトランザクションを特徴付け、その順序は関連するもののみによって決定される必要がある。
具体的には、同一の機能を持つトランザクションは、互いに前もって注文される確率が等しくなければならない。
このフレームワークを拡張して、トランザクション間の関係する特徴の距離が大きくなるほど、一方を他方よりも優先順位付けする確率が高くなる特性を定義します。
SMRにおける平等な機会と差別的プライバシ(DP)との関連が明らかとなり,どのDPメカニズムもSMRの公平性を確保するために利用できることを示す。
この接続は、分散コンピューティングにおけるプライバシと公平性の相互作用の理解を深めるだけでなく、確立されたDP技術を用いて公平な分散プロトコルを設計する新たな機会を開く。
関連論文リスト
- Balancing Confidentiality and Transparency for Blockchain-based Process-Aware Information Systems [46.404531555921906]
機密性と透明性の両立を目的とした,ブロックチェーンベースのPAISアーキテクチャを提案する。
スマートコントラクトは公開インタラクションを制定、強制、保存し、属性ベースの暗号化技術は機密情報へのアクセス許可を指定するために採用されている。
論文 参考訳(メタデータ) (2024-12-07T20:18:36Z) - Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
複数の無線エッジデバイス間の協調推論は、人工知能(AI)アプリケーションを大幅に強化する可能性がある。
抽出された特徴を抽出することは、プロセス中に機密性の高い個人情報が暴露されるため、重大なプライバシーリスクをもたらす。
本稿では,ネットワーク内の各エッジデバイスが抽出された機能のプライバシを保護し,それらを中央サーバに送信して推論を行う,新たなプライバシ保存協調推論機構を提案する。
論文 参考訳(メタデータ) (2024-10-25T18:11:02Z) - Generative Blockchain: Transforming Blockchain from Transaction Recording to Transaction Generation through Proof-of-Merit [5.801684954657074]
生成ブロックチェーンは、トランザクション生成と記録を組み合わせることで、従来のブロックチェーン技術を変革することを目指している。
私たちのデザインの中心は、新しいコンセンサスメカニズムであるProof-of-Merit(PoM)である。
我々は、複雑なトランザクション生成問題を解決するタスクが独立した問題解決者のプールに委譲される、オンデマンドプラットフォーム上でPoMを実証する。
論文 参考訳(メタデータ) (2024-08-23T20:51:10Z) - Unified Mechanism-Specific Amplification by Subsampling and Group Privacy Amplification [54.1447806347273]
サブサンプリングによる増幅は、差分プライバシーを持つ機械学習の主要なプリミティブの1つである。
本稿では、メカニズム固有の保証を導出するための最初の一般的なフレームワークを提案する。
サブサンプリングが複数のユーザのプライバシに与える影響を分析する。
論文 参考訳(メタデータ) (2024-03-07T19:36:05Z) - Privacy-Preserving Federated Learning over Vertically and Horizontally
Partitioned Data for Financial Anomaly Detection [11.167661320589488]
実世界の金融異常検出シナリオでは、データは垂直と水平の両方に分割される。
我々のソリューションは、完全同型暗号化(HE)、セキュアマルチパーティ計算(SMPC)、微分プライバシー(DP)を組み合わせる。
私たちのソリューションは、米国プライバシ・エンハンシング・テクノロジーズ(PET)賞チャレンジの第1フェーズで2位を獲得しました。
論文 参考訳(メタデータ) (2023-10-30T06:51:33Z) - Towards a Theory of Maximal Extractable Value II: Uncertainty [4.07926531936425]
最大抽出可能値(英: Maximal Extractable Value、MEV)は、分散システムで一般的に見られる一時的な独占力によって抽出できる値である。
この抽出は、トランザクションの提出時のユーザのプライバシの欠如と、トランザクションの再注文、追加、および/または検閲を行う独占バリデーターの能力に起因している。
公平な注文手法も経済メカニズムも,任意の支払関数に対して個別にMEVを緩和できないことを示す。
論文 参考訳(メタデータ) (2023-09-25T15:01:11Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Faithful Edge Federated Learning: Scalability and Privacy [4.8534377897519105]
フェデレーション学習は、ローカルデータセットの交換を必要とせずに、分散型エッジデバイスのネットワーク上で機械学習アルゴリズムをトレーニングすることを可能にする。
エージェントが自発的に参加するインセンティブに、フェデレーション学習の鍵となる特徴、不均衡データおよび非i.d.データがどのように影響するかを分析する。
経済性,スケーラビリティ,プライバシを満足する2つの忠実な連合学習機構を設計する。
論文 参考訳(メタデータ) (2021-06-30T08:46:40Z) - VCG Mechanism Design with Unknown Agent Values under Stochastic Bandit
Feedback [104.06766271716774]
本研究では,エージェントが自己の価値を知らない場合に,マルチラウンドの福祉最大化機構設計問題について検討する。
まず、福祉に対する後悔の3つの概念、各エージェントの個々のユーティリティ、メカニズムの3つの概念を定義します。
当社のフレームワークは価格体系を柔軟に制御し、エージェントと販売者の後悔のトレードオフを可能にする。
論文 参考訳(メタデータ) (2020-04-19T18:00:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。