Adaptive Meta-Learning-Based KKL Observer Design for Nonlinear Dynamical
Systems
- URL: http://arxiv.org/abs/2310.19489v1
- Date: Mon, 30 Oct 2023 12:25:14 GMT
- Title: Adaptive Meta-Learning-Based KKL Observer Design for Nonlinear Dynamical
Systems
- Authors: Lukas Trommer, Halil Yigit Oksuz
- Abstract summary: This paper presents a novel approach to observer design for nonlinear dynamical systems through meta-learning.
We introduce a framework that leverages information from measurements of the system output to design a learning-based KKL observer capable of online adaptation to a variety of system conditions and attributes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The theory of Kazantzis-Kravaris/Luenberger (KKL) observer design introduces
a methodology that uses a nonlinear transformation map and its left inverse to
estimate the state of a nonlinear system through the introduction of a linear
observer state space. Data-driven approaches using artificial neural networks
have demonstrated the ability to accurately approximate these transformation
maps. This paper presents a novel approach to observer design for nonlinear
dynamical systems through meta-learning, a concept in machine learning that
aims to optimize learning models for fast adaptation to a distribution of tasks
through an improved focus on the intrinsic properties of the underlying
learning problem. We introduce a framework that leverages information from
measurements of the system output to design a learning-based KKL observer
capable of online adaptation to a variety of system conditions and attributes.
To validate the effectiveness of our approach, we present comprehensive
experimental results for the estimation of nonlinear system states with varying
initial conditions and internal parameters, demonstrating high accuracy,
generalization capability, and robustness against noise.
Related papers
- Koopman-based Deep Learning for Nonlinear System Estimation [1.3791394805787949]
We present a novel data-driven linear estimator based on Koopman operator theory to extract meaningful finite-dimensional representations of complex non-linear systems.
Our estimator is also adaptive to a diffeomorphic transformation of the estimated nonlinear system, which enables it to compute optimal state estimates without re-learning.
arXiv Detail & Related papers (2024-05-01T16:49:54Z) - MPC of Uncertain Nonlinear Systems with Meta-Learning for Fast Adaptation of Neural Predictive Models [6.031205224945912]
A neural State-Space Model (NSSM) is used to approximate the nonlinear system, where a deep encoder network learns the nonlinearity from data.
This transforms the nonlinear system into a linear system in a latent space, enabling the application of model predictive control (MPC) to determine effective control actions.
arXiv Detail & Related papers (2024-04-18T11:29:43Z) - eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
We introduce a low-rank structured variational autoencoder framework for nonlinear state-space graphical models.
We show that our approach consistently demonstrates the ability to learn a more predictive generative model.
arXiv Detail & Related papers (2024-03-03T02:19:49Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
In Online Continual Learning (OCL) a learning system receives a stream of data and sequentially performs prediction and training steps.
We introduce a probabilistic Bayesian online learning model by using a neural representation and a state space model over the linear predictor weights.
In experiments in multi-class classification we demonstrate the predictive ability of the model and its flexibility to capture non-stationarity.
arXiv Detail & Related papers (2023-06-14T11:41:42Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Knowledge-Based Learning of Nonlinear Dynamics and Chaos [3.673994921516517]
We present a universal learning framework for extracting predictive models from nonlinear systems based on observations.
Our framework can readily incorporate first principle knowledge because it naturally models nonlinear systems as continuous-time systems.
arXiv Detail & Related papers (2020-10-07T13:50:13Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.