Quantum Entanglement and Measurement Noise: A Novel Approach to Satellite Node Authentication
- URL: http://arxiv.org/abs/2501.06319v1
- Date: Fri, 10 Jan 2025 19:43:34 GMT
- Title: Quantum Entanglement and Measurement Noise: A Novel Approach to Satellite Node Authentication
- Authors: Pooria Madani, Carolyn McGregor,
- Abstract summary: We introduce a novel authentication scheme for satellite nodes based on quantum entanglement and measurement noise profiles.
Our approach leverages the unique noise characteristics exhibited by each satellite's quantum optical communication system to create a distinctive "quantum noise fingerprint"
This fingerprint is used for node authentication within a satellite constellation, offering a quantum-safe alternative to traditional cryptographic methods.
- Score: 0.9208007322096533
- License:
- Abstract: In this paper, we introduce a novel authentication scheme for satellite nodes based on quantum entanglement and measurement noise profiles. Our approach leverages the unique noise characteristics exhibited by each satellite's quantum optical communication system to create a distinctive "quantum noise fingerprint." This fingerprint is used for node authentication within a satellite constellation, offering a quantum-safe alternative to traditional cryptographic methods. The proposed scheme consists of a training phase, where each satellite engages in a training exercise with its neighbors to compile noise profiles, and an online authentication phase, where these profiles are used for real-time authentication. Our method addresses the inherent challenges of implementing cryptographic-based schemes in space, such as key management and distribution, by exploiting the fundamental properties of quantum mechanics and the unavoidable imperfections in quantum systems. This approach enhances the security and reliability of satellite communication networks, providing a robust solution to the authentication challenges in satellite constellations. We validated and tested several hypotheses for this approach using IBM System One quantum computers.
Related papers
- Combined Quantum and Post-Quantum Security for Earth-Satellite Channels [3.835450563934687]
We present results from a real-time prototype quantum key distribution (QKD) system.
A unique aspect of our system is the integration of QKD with existing cryptographic methods to ensure quantum-resistant security.
Our work demonstrates, for the first time, a deployment of the BBM92 protocol that offers both post-quantum security via the advanced encryption standard (AES) and quantum security via an entanglement-based QKD protocol.
arXiv Detail & Related papers (2025-02-20T04:08:23Z) - Simulations of distributed-phase-reference quantum key distribution protocols [0.1398098625978622]
Quantum key distribution protocols provide a secret key between two users with security guaranteed by the laws of quantum mechanics.
We perform simulations on the Interconnect platform to characterise the practical implementation of these devices.
We briefly describe and simulate some possible eavesdropping attempts, backflash attack, trojan-horse attack and detector-blinding attack exploiting the device imperfections.
arXiv Detail & Related papers (2024-06-13T13:19:04Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Satellite-based Quantum Network: Security and Challenges over
Atmospheric Channel [32.17201108512485]
We review the quantum states and channel properties for satellite-based quantum networks and long-range quantum state transfer.
We highlight some challenges, such as transmissivity statistics, estimation of channel parameters and attack resilience.
arXiv Detail & Related papers (2023-07-29T17:54:15Z) - On the Characterization of Quantum Flip Stars with Quantum Network
Tomography [11.545489116237102]
Quantum Network Tomography refers to the characterization of channel noise in a quantum network through end-to-end measurements.
We propose network tomography protocols for quantum star networks formed by quantum channels characterized by a single, non-trivial Pauli operator.
Our results further the end-to-end characterization of quantum bit-flip star networks by introducing tomography protocols where state distribution and measurements are designed separately.
arXiv Detail & Related papers (2023-07-12T00:18:15Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Secure Key from Quantum Discord [22.97866257572447]
We show how to make use of discord to analyze security in a specific quantum cryptography protocol.
Our method is robust against imperfections in qubit sources and qubit measurements as well as basis misalignment due to quantum channels.
arXiv Detail & Related papers (2023-04-12T14:21:49Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Realizing quantum nodes in space for cost-effective, global quantum
communication: in-orbit results and next steps [94.08853042978113]
SpooQy-1 is a satellite developed at the Centre for Quantum Technologies.
It has successfully demonstrated the operation of an entangled photon pair source on a resource-constrained CubeSat platform.
arXiv Detail & Related papers (2021-04-22T02:59:23Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.