Modeling Neural Networks with Privacy Using Neural Stochastic Differential Equations
- URL: http://arxiv.org/abs/2501.06686v2
- Date: Fri, 20 Jun 2025 22:28:35 GMT
- Title: Modeling Neural Networks with Privacy Using Neural Stochastic Differential Equations
- Authors: Sanghyun Hong, Fan Wu, Anthony Gruber, Kookjin Lee,
- Abstract summary: We study the feasibility of using neural ordinary differential equations (NODEs) to model systems with intrinsic privacy properties.<n>We show that NSDEs are differentially-private (DP) learners that provide the same provable privacy guarantees as DPSGD.<n>NSDEs are also effective in mitigating membership inference attacks, achieving risk levels comparable to private models trained with DP-SGD.
- Score: 9.441304891056372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we study the feasibility of using neural ordinary differential equations (NODEs) to model systems with intrinsic privacy properties. Unlike conventional feedforward neural networks, which have unlimited expressivity and can represent arbitrary mappings between inputs and outputs, NODEs constrain their learning to the solution of a system of differential equations. We first examine whether this constraint reduces memorization and, consequently, the membership inference risks associated with NODEs. We conduct a comprehensive evaluation of NODEs under membership inference attacks and show that they exhibit twice the resistance compared to conventional models such as ResNets. By analyzing the variance in membership risks across different NODE models, we find that their limited expressivity leads to reduced overfitting to the training data. We then demonstrate, both theoretically and empirically, that membership inference risks can be further mitigated by utilizing a stochastic variant of NODEs: neural stochastic differential equations (NSDEs). We show that NSDEs are differentially-private (DP) learners that provide the same provable privacy guarantees as DPSGD, the de-facto mechanism for training private models. NSDEs are also effective in mitigating membership inference attacks, achieving risk levels comparable to private models trained with DP-SGD while offering an improved privacyutility trade-off. Moreover, we propose a drop-in-replacement strategy that efficiently integrates NSDEs into conventional feedforward architectures to enhance their privacy.
Related papers
- Differentially Private Random Feature Model [52.468511541184895]
We produce a differentially private random feature model for privacy-preserving kernel machines.<n>We show that our method preserves privacy and derive a generalization error bound for the method.
arXiv Detail & Related papers (2024-12-06T05:31:08Z) - Non-adversarial training of Neural SDEs with signature kernel scores [4.721845865189578]
State-of-the-art performance for irregular time series generation has been previously obtained by training these models adversarially as GANs.
In this paper, we introduce a novel class of scoring rules on pathspace based on signature kernels.
arXiv Detail & Related papers (2023-05-25T17:31:18Z) - How Spurious Features Are Memorized: Precise Analysis for Random and NTK Features [19.261178173399784]
We consider spurious features that are uncorrelated with the learning task.
We provide a precise characterization of how they are memorized via two separate terms.
We prove that the memorization of spurious features weakens as the generalization capability increases.
arXiv Detail & Related papers (2023-05-20T05:27:41Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Improving Robustness and Uncertainty Modelling in Neural Ordinary
Differential Equations [0.2538209532048866]
We propose a novel approach to model uncertainty in NODE by considering a distribution over the end-time $T$ of the ODE solver.
We also propose, adaptive latent time NODE (ALT-NODE), which allow each data point to have a distinct posterior distribution over end-times.
We demonstrate the effectiveness of the proposed approaches in modelling uncertainty and robustness through experiments on synthetic and several real-world image classification data.
arXiv Detail & Related papers (2021-12-23T16:56:10Z) - PEARL: Data Synthesis via Private Embeddings and Adversarial
Reconstruction Learning [1.8692254863855962]
We propose a new framework of data using deep generative models in a differentially private manner.
Within our framework, sensitive data are sanitized with rigorous privacy guarantees in a one-shot fashion.
Our proposal has theoretical guarantees of performance, and empirical evaluations on multiple datasets show that our approach outperforms other methods at reasonable levels of privacy.
arXiv Detail & Related papers (2021-06-08T18:00:01Z) - Accurate and Reliable Forecasting using Stochastic Differential
Equations [48.21369419647511]
It is critical yet challenging for deep learning models to properly characterize uncertainty that is pervasive in real-world environments.
This paper develops SDE-HNN to characterize the interaction between the predictive mean and variance of HNNs for accurate and reliable regression.
Experiments on the challenging datasets show that our method significantly outperforms the state-of-the-art baselines in terms of both predictive performance and uncertainty quantification.
arXiv Detail & Related papers (2021-03-28T04:18:11Z) - The Influence of Dropout on Membership Inference in Differentially
Private Models [0.0]
Differentially private models seek to protect the privacy of data the model is trained on.
We conduct membership inference attacks against models with and without differential privacy.
arXiv Detail & Related papers (2021-03-16T12:09:51Z) - Wide Network Learning with Differential Privacy [7.453881927237143]
Current generation of neural networks suffers significant loss accuracy under most practically relevant privacy training regimes.
We develop a general approach towards training these models that takes advantage of the sparsity of the gradients of private Empirical Minimization (ERM)
Following the same number of parameters, we propose a novel algorithm for privately training neural networks.
arXiv Detail & Related papers (2021-03-01T20:31:50Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Robust pricing and hedging via neural SDEs [0.0]
We develop and analyse novel algorithms needed for efficient use of neural SDEs.
We find robust bounds for prices of derivatives and the corresponding hedging strategies while incorporating relevant market data.
Neural SDEs allow consistent calibration under both the risk-neutral and the real-world measures.
arXiv Detail & Related papers (2020-07-08T14:33:17Z) - Constrained Neural Ordinary Differential Equations with Stability
Guarantees [1.1086440815804224]
We show how to model discrete ordinary differential equations with algebraic nonlinearities as deep neural networks.
We derive the stability guarantees of the network layers based on the implicit constraints imposed on the weight's eigenvalues.
We demonstrate the prediction accuracy of learned neural ODEs evaluated on open-loop simulations.
arXiv Detail & Related papers (2020-04-22T22:07:57Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
Regularization of neural networks (e.g. dropout) is a widespread technique in deep learning that allows for better generalization.
We show that data augmentation during the training improves the performance of both deterministic and versions of the same model.
However, the improvements obtained by the data augmentation completely eliminate the empirical regularization gains, making the performance of neural ODE and neural SDE negligible.
arXiv Detail & Related papers (2020-02-22T22:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.