Risk-Averse Finetuning of Large Language Models
- URL: http://arxiv.org/abs/2501.06911v1
- Date: Sun, 12 Jan 2025 19:48:21 GMT
- Title: Risk-Averse Finetuning of Large Language Models
- Authors: Sapana Chaudhary, Ujwal Dinesha, Dileep Kalathil, Srinivas Shakkottai,
- Abstract summary: We propose integrating risk-averse principles into Large Language Models (LLMs) fine-tuning to minimize the occurrence of harmful outputs.
Empirical evaluations on sentiment modification and toxicity mitigation tasks demonstrate the efficacy of risk-averse reinforcement learning with human feedback.
- Score: 15.147772383812313
- License:
- Abstract: We consider the challenge of mitigating the generation of negative or toxic content by the Large Language Models (LLMs) in response to certain prompts. We propose integrating risk-averse principles into LLM fine-tuning to minimize the occurrence of harmful outputs, particularly rare but significant events. By optimizing the risk measure of Conditional Value at Risk (CVaR), our methodology trains LLMs to exhibit superior performance in avoiding toxic outputs while maintaining effectiveness in generative tasks. Empirical evaluations on sentiment modification and toxicity mitigation tasks demonstrate the efficacy of risk-averse reinforcement learning with human feedback (RLHF) in promoting a safer and more constructive online discourse environment.
Related papers
- Large Language Models can be Strong Self-Detoxifiers [82.6594169242814]
Self-disciplined Autoregressive Sampling (SASA) is a lightweight controlled decoding algorithm for toxicity reduction of large language models (LLMs)
SASA tracks the margin of the current output to steer the generation away from the toxic subspace, by adjusting the autoregressive sampling strategy.
evaluated on LLMs of different scale and nature, namely Llama-3.1-Instruct (8B), Llama-2 (7B), and GPT2-L models with the RealToxicityPrompts, BOLD, and AttaQ benchmarks.
arXiv Detail & Related papers (2024-10-04T17:45:15Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - GUARD-D-LLM: An LLM-Based Risk Assessment Engine for the Downstream uses of LLMs [0.0]
This paper explores risks emanating from downstream uses of large language models (LLMs)
We introduce a novel LLM-based risk assessment engine (GUARD-D-LLM) designed to pinpoint and rank threats relevant to specific use cases derived from text-based user inputs.
Integrating thirty intelligent agents, this innovative approach identifies bespoke risks, gauges their severity, offers targeted suggestions for mitigation, and facilitates risk-aware development.
arXiv Detail & Related papers (2024-04-02T05:25:17Z) - Risk and Response in Large Language Models: Evaluating Key Threat Categories [6.436286493151731]
This paper explores the pressing issue of risk assessment in Large Language Models (LLMs)
By utilizing the Anthropic Red-team dataset, we analyze major risk categories, including Information Hazards, Malicious Uses, and Discrimination/Hateful content.
Our findings indicate that LLMs tend to consider Information Hazards less harmful, a finding confirmed by a specially developed regression model.
arXiv Detail & Related papers (2024-03-22T06:46:40Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
Current mitigation strategies, while effective, are not resilient under adversarial attacks.
This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently moderate harmful and unsafe inputs.
arXiv Detail & Related papers (2024-03-19T07:25:02Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
We introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation.
We design two innovative meta-algorithms: textttRS-DisRL-M, a model-based strategy for model-based function approximation, and textttRS-DisRL-V, a model-free approach for general value function approximation.
arXiv Detail & Related papers (2024-02-28T08:43:18Z) - C-RAG: Certified Generation Risks for Retrieval-Augmented Language Models [57.10361282229501]
We propose C-RAG, the first framework to certify generation risks for RAG models.
Specifically, we provide conformal risk analysis for RAG models and certify an upper confidence bound of generation risks.
We prove that RAG achieves a lower conformal generation risk than that of a single LLM when the quality of the retrieval model and transformer is non-trivial.
arXiv Detail & Related papers (2024-02-05T16:46:16Z) - Extreme Risk Mitigation in Reinforcement Learning using Extreme Value
Theory [10.288413564829579]
A critical aspect of risk awareness involves modeling highly rare risk events (rewards) that could potentially lead to catastrophic outcomes.
While risk-aware RL techniques do exist, their level of risk aversion heavily relies on the precision of the state-action value function estimation.
Our work proposes to enhance the resilience of RL agents when faced with very rare and risky events by focusing on refining the predictions of the extreme values predicted by the state-action value function distribution.
arXiv Detail & Related papers (2023-08-24T18:23:59Z) - Risk-Averse Reinforcement Learning via Dynamic Time-Consistent Risk
Measures [10.221369785560785]
In this paper, we consider the problem of maximizing dynamic risk of a sequence of rewards in Markov Decision Processes (MDPs)
Using a convex combination of expectation and conditional value-at-risk (CVaR) as a special one-step conditional risk measure, we reformulate the risk-averse MDP as a risk-neutral counterpart with augmented action space and manipulation on the immediate rewards.
Our numerical studies show that the risk-averse setting can reduce the variance and enhance robustness of the results.
arXiv Detail & Related papers (2023-01-14T21:43:18Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
In risk-averse reinforcement learning (RL), the goal is to optimize some risk measure of the returns.
We prove that under certain conditions this inevitably leads to a local-optimum barrier, and propose a soft risk mechanism to bypass it.
We demonstrate improved risk aversion in maze navigation, autonomous driving, and resource allocation benchmarks.
arXiv Detail & Related papers (2022-05-10T19:40:52Z) - Challenges in Detoxifying Language Models [44.48396735574315]
Large language models (LM) generate remarkably fluent text and can be efficiently adapted across NLP tasks.
Measuring and guaranteeing the quality of generated text in terms of safety is imperative for deploying LMs in the real world.
We evaluate several toxicity mitigation strategies with respect to both automatic and human evaluation.
arXiv Detail & Related papers (2021-09-15T17:27:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.