Driver Age and Its Effect on Key Driving Metrics: Insights from Dynamic Vehicle Data
- URL: http://arxiv.org/abs/2501.06918v1
- Date: Sun, 12 Jan 2025 20:01:07 GMT
- Title: Driver Age and Its Effect on Key Driving Metrics: Insights from Dynamic Vehicle Data
- Authors: Aparna Joshi, Kojo Adugyamfi, Jennifer Merickel, Pujitha Gunaratne, Anuj Sharma,
- Abstract summary: By 2030, the senior population aged 65 and older is expected to increase by over 50%, significantly raising the number of older drivers on the road.
Drivers over 70 face higher crash death rates compared to those in their forties and fifties.
- Score: 2.3072218701168166
- License:
- Abstract: By 2030, the senior population aged 65 and older is expected to increase by over 50%, significantly raising the number of older drivers on the road. Drivers over 70 face higher crash death rates compared to those in their forties and fifties, underscoring the importance of developing more effective safety interventions for this demographic. Although the impact of aging on driving behavior has been studied, there is limited research on how these behaviors translate into real-world driving scenarios. This study addresses this need by leveraging Naturalistic Driving Data (NDD) to analyze driving performance measures - specifically, speed limit adherence on interstates and deceleration at stop intersections, both of which may be influenced by age-related declines. Using NDD, we developed Cumulative Distribution Functions (CDFs) to establish benchmarks for key driving behaviors among senior and young drivers. Our analysis, which included anomaly detection, benchmark comparisons, and accuracy evaluations, revealed significant differences in driving patterns primarily related to speed limit adherence at 75mph. While our approach shows promising potential for enhancing Advanced Driver Assistance Systems (ADAS) by providing tailored interventions based on age-specific adherence to speed limit driving patterns, we recognize the need for additional data to refine and validate metrics for other driving behaviors. By establishing precise benchmarks for various driving performance metrics, ADAS can effectively identify anomalies, such as abrupt deceleration, which may indicate impaired driving or other safety concerns. This study lays a strong foundation for future research aimed at improving safety interventions through detailed driving behavior analysis.
Related papers
- Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - Masked EEG Modeling for Driving Intention Prediction [27.606175591082756]
This paper pioneers a novel research direction in BCI-assisted driving, studying the neural patterns related to driving intentions.
We propose a novel Masked EEG Modeling framework for predicting human driving intentions, including the intention for left turning, right turning, and straight proceeding.
Our model attains an accuracy of 85.19% when predicting driving intentions for drowsy subjects, which shows its promising potential for mitigating traffic accidents related to drowsy driving.
arXiv Detail & Related papers (2024-08-08T03:49:05Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - In-vehicle Sensing and Data Analysis for Older Drivers with Mild
Cognitive Impairment [0.8426358786287627]
The objectives of this paper include designing low-cost in-vehicle sensing hardware capable of obtaining high-precision positioning and telematics data.
Our statistical analysis comparing drivers with mild cognitive impairment (MCI) to those without reveals that those with MCI exhibit smoother and safer driving patterns.
Our Random Forest models identified the number of night trips, number of trips, and education as the most influential factors in our data evaluation.
arXiv Detail & Related papers (2023-11-15T15:47:24Z) - Using Visual and Vehicular Sensors for Driver Behavior Analysis: A
Survey [0.0]
Risky drivers account for 70% of fatal accidents in the United States.
This paper examines the various techniques used to analyze driver behavior using visual and vehicular data.
arXiv Detail & Related papers (2023-08-25T14:33:59Z) - Studying the Impact of Semi-Cooperative Drivers on Overall Highway Flow [76.38515853201116]
Semi-cooperative behaviors are intrinsic properties of human drivers and should be considered for autonomous driving.
New autonomous planners can consider the social value orientation (SVO) of human drivers to generate socially-compliant trajectories.
We present study of implicit semi-cooperative driving where agents deploy a game-theoretic version of iterative best response.
arXiv Detail & Related papers (2023-04-23T16:01:36Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [50.936478241688114]
Nonobjective driving experience is difficult to model, so a mechanism simulating the driver experience accumulation procedure is absent in existing methods.
We propose a FeedBack Loop Network (FBLNet), which attempts to model the driving experience accumulation procedure.
Our model exhibits a solid advantage over existing methods, achieving an outstanding performance improvement on two driver attention benchmark datasets.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - Dynamic and Systematic Survey of Deep Learning Approaches for Driving
Behavior Analysis [2.879036956042183]
Analyzing driving behaviour could lead to optimize and avoid mentioned issues.
By identifying the type of driving and mapping them to the consequences of that type of driving, we can get a model to prevent them.
arXiv Detail & Related papers (2021-09-18T19:47:03Z) - Driver Drowsiness Classification Based on Eye Blink and Head Movement
Features Using the k-NN Algorithm [8.356765961526955]
This work is to extend the driver drowsiness detection in vehicles using signals of a driver monitoring camera.
For this purpose, 35 features related to the driver's eye blinking behavior and head movements are extracted in driving simulator experiments.
A concluding analysis of the best performing feature sets yields valuable insights about the influence of drowsiness on the driver's blink behavior and head movements.
arXiv Detail & Related papers (2020-09-28T12:37:38Z) - Learning Accurate and Human-Like Driving using Semantic Maps and
Attention [152.48143666881418]
This paper investigates how end-to-end driving models can be improved to drive more accurately and human-like.
We exploit semantic and visual maps from HERE Technologies and augment the existing Drive360 dataset with such.
Our models are trained and evaluated on the Drive360 + HERE dataset, which features 60 hours and 3000 km of real-world driving data.
arXiv Detail & Related papers (2020-07-10T22:25:27Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
Out-of-training-distribution (OOD) scenarios are a common challenge of learning agents at deployment.
We propose an uncertainty-aware planning method, called emphrobust imitative planning (RIP)
Our method can detect and recover from some distribution shifts, reducing the overconfident and catastrophic extrapolations in OOD scenes.
We introduce an autonomous car novel-scene benchmark, textttCARNOVEL, to evaluate the robustness of driving agents to a suite of tasks with distribution shifts.
arXiv Detail & Related papers (2020-06-26T11:07:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.