論文の概要: A group-theoretic framework for machine learning in hyperbolic spaces
- arxiv url: http://arxiv.org/abs/2501.06934v1
- Date: Sun, 12 Jan 2025 21:06:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:23:05.011272
- Title: A group-theoretic framework for machine learning in hyperbolic spaces
- Title(参考訳): 双曲空間における機械学習のための群理論フレームワーク
- Authors: Vladimir Jaćimović,
- Abstract要約: 本稿では,双曲球における平均(バリ中心)と確率分布の新しいファミリーの概念を紹介する。
バリセンタの計算と最大推定のための効率的な最適化アルゴリズムを提案する。
より要求の多いアルゴリズムを設計し、双曲型ディープラーニングパイプラインを実装するために、ここで提示される基本的な概念を構築できる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Embedding the data in hyperbolic spaces can preserve complex relationships in very few dimensions, thus enabling compact models and improving efficiency of machine learning (ML) algorithms. The underlying idea is that hyperbolic representations can prevent the loss of important structural information for certain ubiquitous types of data. However, further advances in hyperbolic ML require more principled mathematical approaches and adequate geometric methods. The present study aims at enhancing mathematical foundations of hyperbolic ML by combining group-theoretic and conformal-geometric arguments with optimization and statistical techniques. Precisely, we introduce the notion of the mean (barycenter) and the novel family of probability distributions on hyperbolic balls. We further propose efficient optimization algorithms for computation of the barycenter and for maximum likelihood estimation. One can build upon basic concepts presented here in order to design more demanding algorithms and implement hyperbolic deep learning pipelines.
- Abstract(参考訳): 双曲空間にデータを埋め込むことは、非常に少数の次元で複雑な関係を保存することができ、コンパクトなモデルを可能にし、機械学習(ML)アルゴリズムの効率を向上させることができる。
根底にある考え方は、双曲表現は特定のユビキタスなデータに対して重要な構造情報が失われるのを防ぐことである。
しかし、双曲型MLのさらなる進歩には、より原理化された数学的アプローチと適切な幾何学的手法が必要である。
本研究の目的は,群理論と共形幾何学の議論と最適化と統計的手法を組み合わせることで,双曲型MLの数学的基礎を強化することである。
正確には、双曲球上の平均(バリ中心)と確率分布の新しいファミリーの概念を導入する。
さらに、バリセンタの計算と最大推定のための効率的な最適化アルゴリズムを提案する。
より要求の多いアルゴリズムを設計し、双曲型ディープラーニングパイプラインを実装するために、ここで提示される基本的な概念を構築できる。
関連論文リスト
- Tempered Calculus for ML: Application to Hyperbolic Model Embedding [70.61101116794549]
MLで使用されるほとんどの数学的歪みは、本質的に自然界において積分的である。
本稿では,これらの歪みを改善するための基礎的理論とツールを公表し,機械学習の要件に対処する。
我々は、最近MLで注目を集めた問題、すなわち、ハイパーボリック埋め込みを「チープ」で正確なエンコーディングで適用する方法を示す。
論文 参考訳(メタデータ) (2024-02-06T17:21:06Z) - Fast hyperboloid decision tree algorithms [0.6656737591902598]
我々は、決定木アルゴリズムの新たな拡張であるHyperDTを双曲空間に提示する。
私たちのアプローチは概念的には単純で、一定時間の意思決定の複雑さを維持します。
HyperDTの上に構築されたハイパーRFは、双曲的ランダムフォレストモデルである。
論文 参考訳(メタデータ) (2023-10-20T22:31:10Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Clustering based on Mixtures of Sparse Gaussian Processes [6.939768185086753]
低次元の組込み空間を使ってデータをクラスタする方法は、マシンラーニングにおいて依然として難しい問題である。
本稿では,クラスタリングと次元還元の両立を目的とした共同定式化を提案する。
我々のアルゴリズムはスパースガウス過程の混合に基づいており、スパースガウス過程混合クラスタリング(SGP-MIC)と呼ばれる。
論文 参考訳(メタデータ) (2023-03-23T20:44:36Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - HRCF: Enhancing Collaborative Filtering via Hyperbolic Geometric
Regularization [52.369435664689995]
HRCF (textitHyperbolic Regularization powered Collaborative Filtering) を導入し,幾何認識型双曲正規化器を設計する。
具体的には、ルートアライメントとオリジン認識ペナルティによる最適化手順を強化する。
提案手法は,双曲的凝集による過度な平滑化問題に対処でき,モデルの識別能力も向上する。
論文 参考訳(メタデータ) (2022-04-18T06:11:44Z) - Provably Accurate and Scalable Linear Classifiers in Hyperbolic Spaces [39.71927912296049]
スケーラブルで単純な双曲型線形分類器を学習するための統一的なフレームワークを提案する。
我々のアプローチの要点は、ポアンカーの球体モデルに焦点を合わせ、接空間形式を用いて分類問題を定式化することである。
Poincarの2階と戦略的パーセプトロンの優れた性能は、提案フレームワークが双曲空間における一般的な機械学習問題にまで拡張可能であることを示している。
論文 参考訳(メタデータ) (2022-03-07T21:36:21Z) - Highly Scalable and Provably Accurate Classification in Poincare Balls [40.82908295137667]
我々は、スケーラブルで単純な双曲型線形分類器を証明可能な性能保証で学習するための統一的なフレームワークを構築した。
提案手法は,新しい双曲型および二階型パーセプトロンアルゴリズムと,双曲型サポートベクトルマシン分類器の効率的かつ高精度な凸最適化設定を含む。
数百万の点からなる合成データセットと、シングルセルRNA-seq式測定、CIFAR10、Fashion-MNIST、mini-ImageNetのような複雑な実世界のデータセットの性能評価を行う。
論文 参考訳(メタデータ) (2021-09-08T16:59:39Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
本研究は,本質的な特徴を持つ学習表現の次元削減手法を提案する。
提案手法は, 十分次元還元法の非パラメトリック一般化である。
推定された深度非パラメトリック表現は、その余剰リスクが0に収束するという意味で一貫したものであることを示す。
論文 参考訳(メタデータ) (2020-06-10T14:47:43Z) - Hyperbolic Distance Matrices [31.90021739879016]
本稿では,任意のノイズ量と非メトリックデータの混合から,双曲的埋め込みを計算するための統一的なフレームワークを提案する。
我々のアルゴリズムは半定値プログラミングと双曲距離行列の概念に基づいている。
数値実験を通して、計量と非計量の制約を混合する柔軟性によって、任意のデータからの埋め込みを効率的に計算できることを示す。
論文 参考訳(メタデータ) (2020-05-18T12:59:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。