Neural Probabilistic Circuits: Enabling Compositional and Interpretable Predictions through Logical Reasoning
- URL: http://arxiv.org/abs/2501.07021v2
- Date: Mon, 20 Jan 2025 04:00:48 GMT
- Title: Neural Probabilistic Circuits: Enabling Compositional and Interpretable Predictions through Logical Reasoning
- Authors: Weixin Chen, Simon Yu, Huajie Shao, Lui Sha, Han Zhao,
- Abstract summary: We propose an inherently transparent model architecture called Neural Probabilistic Circuits (NPCs)
NPCs enable compositional and interpretable predictions through logical reasoning.
We show that NPCs strike a balance between interpretability and performance, achieving results competitive even with end-to-end black-box models.
- Score: 12.97542954564487
- License:
- Abstract: End-to-end deep neural networks have achieved remarkable success across various domains but are often criticized for their lack of interpretability. While post hoc explanation methods attempt to address this issue, they often fail to accurately represent these black-box models, resulting in misleading or incomplete explanations. To overcome these challenges, we propose an inherently transparent model architecture called Neural Probabilistic Circuits (NPCs), which enable compositional and interpretable predictions through logical reasoning. In particular, an NPC consists of two modules: an attribute recognition model, which predicts probabilities for various attributes, and a task predictor built on a probabilistic circuit, which enables logical reasoning over recognized attributes to make class predictions. To train NPCs, we introduce a three-stage training algorithm comprising attribute recognition, circuit construction, and joint optimization. Moreover, we theoretically demonstrate that an NPC's error is upper-bounded by a linear combination of the errors from its modules. To further demonstrate the interpretability of NPC, we provide both the most probable explanations and the counterfactual explanations. Empirical results on four benchmark datasets show that NPCs strike a balance between interpretability and performance, achieving results competitive even with those of end-to-end black-box models while providing enhanced interpretability.
Related papers
- Sparse Prototype Network for Explainable Pedestrian Behavior Prediction [60.80524827122901]
We present Sparse Prototype Network (SPN), an explainable method designed to simultaneously predict a pedestrian's future action, trajectory, and pose.
Regularized by mono-semanticity and clustering constraints, the prototypes learn consistent and human-understandable features.
arXiv Detail & Related papers (2024-10-16T03:33:40Z) - Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks [17.238290206236027]
Prob-PSENNs replace point estimates for prototypes with probability distributions over their values.
Prob-PSENNs provide more meaningful and robust explanations than their non-probabilistic counterparts.
arXiv Detail & Related papers (2024-03-20T16:47:28Z) - InterpretCC: Intrinsic User-Centric Interpretability through Global Mixture of Experts [31.738009841932374]
Interpretability for neural networks is a trade-off between three key requirements.
We present InterpretCC, a family of interpretable-by-design neural networks that guarantee human-centric interpretability.
arXiv Detail & Related papers (2024-02-05T11:55:50Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
Human trajectory forecasting helps to understand and predict human behaviors, enabling applications from social robots to self-driving cars.
Model-free methods offer superior prediction accuracy but lack explainability, while model-based methods provide explainability but cannot predict well.
We show that BNSP-SFM achieves up to a 50% improvement in prediction accuracy, compared with 11 state-of-the-art methods.
arXiv Detail & Related papers (2023-07-04T16:45:21Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Multi-objective Explanations of GNN Predictions [15.563499097282978]
Graph Neural Network (GNN) has achieved state-of-the-art performance in various high-stake prediction tasks.
Prior methods use simpler subgraphs to simulate the full model, or counterfactuals to identify the causes of a prediction.
arXiv Detail & Related papers (2021-11-29T16:08:03Z) - i-Algebra: Towards Interactive Interpretability of Deep Neural Networks [41.13047686374529]
We present i-Algebra, a first-of-its-kind interactive framework for interpreting deep neural networks (DNNs)
At its core is a library of atomic, composable operators, which explain model behaviors at varying input granularity, during different inference stages, and from distinct interpretation perspectives.
We conduct user studies in a set of representative analysis tasks, including inspecting adversarial inputs, resolving model inconsistency, and cleansing contaminated data, all demonstrating its promising usability.
arXiv Detail & Related papers (2021-01-22T19:22:57Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
We propose using k nearest neighbor representations to identify training examples responsible for a model's predictions.
We show that kNN representations are effective at uncovering learned spurious associations.
Our results indicate that the kNN approach makes the finetuned model more robust to adversarial inputs.
arXiv Detail & Related papers (2020-10-18T16:55:25Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z) - Interpretable Representations in Explainable AI: From Theory to Practice [7.031336702345381]
Interpretable representations are the backbone of many explainers that target black-box predictive systems.
We study properties of interpretable representations that encode presence and absence of human-comprehensible concepts.
arXiv Detail & Related papers (2020-08-16T21:44:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.