論文の概要: Variable Bregman Majorization-Minimization Algorithm and its Application to Dirichlet Maximum Likelihood Estimation
- arxiv url: http://arxiv.org/abs/2501.07306v1
- Date: Mon, 13 Jan 2025 13:16:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:21:06.339341
- Title: Variable Bregman Majorization-Minimization Algorithm and its Application to Dirichlet Maximum Likelihood Estimation
- Title(参考訳): 可変ブレグマン偏極最小化アルゴリズムとディリクレ最大近似への応用
- Authors: Ségolène Martin, Jean-Christophe Pesquet, Gabriele Steidl, Ismail Ben Ayed,
- Abstract要約: 本稿では,微分可能部分の和として表現される凸関数と,非滑らかな項を最小化する,新しいブレグマン降下アルゴリズムを提案する。
VBMM(Variable Bregman Majorization-Minimization)アルゴリズムと呼ばれるこの手法は、Bregman Proximal Gradient法を拡張している。
数値実験により、VBMMアルゴリズムは収束速度において既存の手法よりも優れていることを確認した。
- 参考スコア(独自算出の注目度): 26.384330822086863
- License:
- Abstract: We propose a novel Bregman descent algorithm for minimizing a convex function that is expressed as the sum of a differentiable part (defined over an open set) and a possibly nonsmooth term. The approach, referred to as the Variable Bregman Majorization-Minimization (VBMM) algorithm, extends the Bregman Proximal Gradient method by allowing the Bregman function used in the divergence to adaptively vary at each iteration, provided it satisfies a majorizing condition on the objective function. This adaptive framework enables the algorithm to approximate the objective more precisely at each iteration, thereby allowing for accelerated convergence compared to the traditional Bregman Proximal Gradient descent. We establish the convergence of the VBMM algorithm to a minimizer under mild assumptions on the family of metrics used. Furthermore, we introduce a novel application of both the Bregman Proximal Gradient method and the VBMM algorithm to the estimation of the multidimensional parameters of a Dirichlet distribution through the maximization of its log-likelihood. Numerical experiments confirm that the VBMM algorithm outperforms existing approaches in terms of convergence speed.
- Abstract(参考訳): 本稿では,(開集合上で定義された)微分可能部分の和として表現される凸関数を最小化する,新しいブレグマン降下アルゴリズムを提案する。
VBMM (Variable Bregman Majorization-Minimization) アルゴリズムと呼ばれるこの手法は、目的関数のメジャー化条件を満たす場合、分岐で使用されるブレグマン関数を各反復で適応的に変化させることにより、ブレグマン近似勾配法を拡張する。
この適応的枠組みにより、アルゴリズムは各反復で目的をより正確に近似することができ、従って従来のブレグマン近位勾配よりも早く収束することができる。
我々は,VBMMアルゴリズムの最小値への収束を,使用したメトリクスの族に対する軽度な仮定の下で確立する。
さらに,Bregman Proximal Gradient法とVBMMアルゴリズムの両手法を,ログの最大化によるディリクレ分布の多次元パラメータ推定に適用した。
数値実験により、VBMMアルゴリズムは収束速度において既存の手法よりも優れていることを確認した。
関連論文リスト
- Variable Substitution and Bilinear Programming for Aligning Partially Overlapping Point Sets [48.1015832267945]
本研究では,RPMアルゴリズムの最小化目的関数を用いて要求を満たす手法を提案する。
分岐とバウンド(BnB)アルゴリズムが考案され、パラメータのみに分岐し、収束率を高める。
実験による評価は,非剛性変形,位置雑音,外れ値に対する提案手法の高剛性を示す。
論文 参考訳(メタデータ) (2024-05-14T13:28:57Z) - Regularized Q-Learning with Linear Function Approximation [2.765106384328772]
線形汎関数近似を用いた正規化Q-ラーニングの2段階最適化について検討する。
特定の仮定の下では、提案アルゴリズムはマルコフ雑音の存在下で定常点に収束することを示す。
論文 参考訳(メタデータ) (2024-01-26T20:45:40Z) - Moreau Envelope ADMM for Decentralized Weakly Convex Optimization [55.2289666758254]
本稿では,分散最適化のための乗算器の交互方向法(ADMM)の近位変種を提案する。
数値実験の結果,本手法は広く用いられている手法よりも高速かつ堅牢であることが示された。
論文 参考訳(メタデータ) (2023-08-31T14:16:30Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Convergence of ease-controlled Random Reshuffling gradient Algorithms under Lipschitz smoothness [0.0]
非常に多くのスムーズで可能な非サイズの関数の平均を考慮し、この問題に対処するために2つの広く最小限のフレームワークを使用します。
IG/RRスキームの簡易制御による修正を定義する。
我々は、完全なバッチ勾配(L-BFGS)とIG/RR手法の実装の両方で実装を証明し、アルゴリズムが同様の計算作業を必要とすることを証明した。
論文 参考訳(メタデータ) (2022-12-04T15:26:36Z) - An Algebraically Converging Stochastic Gradient Descent Algorithm for
Global Optimization [14.336473214524663]
アルゴリズムの主要な構成要素は、目的関数の値に基づくランダム性である。
アルゴリズムの収束を代数学で証明し、パラメータ空間でチューニングする。
アルゴリズムの効率性とロバスト性を示す数値的な例をいくつか提示する。
論文 参考訳(メタデータ) (2022-04-12T16:27:49Z) - Bregman Gradient Policy Optimization [97.73041344738117]
本稿では,Bregmanの発散と運動量に基づく強化学習のためのBregmanグラデーションポリシーの最適化を設計する。
VR-BGPOは、各イテレーションで1つの軌道のみを必要とする$epsilon$stationaryポイントを見つけるために、$tilde(epsilon-3)$で最高の複雑性に達する。
論文 参考訳(メタデータ) (2021-06-23T01:08:54Z) - AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods [7.486132958737807]
適応性に対する暗黙的アプローチによる適応分散低減手法を提案する。
有限サム最小化問題に対する収束保証を提供し,局所幾何が許せばサラよりも高速に収束できることを示す。
このアルゴリズムはステップサイズを暗黙的に計算し、関数の局所リプシッツ滑らかさを効率的に推定する。
論文 参考訳(メタデータ) (2021-02-19T01:17:15Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。