論文の概要: A Comparative Analysis of DNN-based White-Box Explainable AI Methods in Network Security
- arxiv url: http://arxiv.org/abs/2501.07801v1
- Date: Tue, 14 Jan 2025 02:57:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:25:55.115329
- Title: A Comparative Analysis of DNN-based White-Box Explainable AI Methods in Network Security
- Title(参考訳): ネットワークセキュリティにおけるDNNベースのWhite-Box Explainable AI手法の比較分析
- Authors: Osvaldo Arreche, Mustafa Abdallah,
- Abstract要約: 本稿では,ニューラルネットワークモデルのエンドツーエンドフレームワークを用いて,NIDSのWhite-Box XAI技術(特にLRP,IG,DeepLift)を適用し,評価する。
グローバルおよび地域の範囲を評価し,6つの異なる評価尺度(記述精度,疎度,安定性,堅牢性,効率,完全性)について検討する。
その結果,White-box XAI技術を用いることで,IDSにとって重要な指標であるロバスト性や完全性が高く評価されることがわかった。
- 参考スコア(独自算出の注目度): 1.3022753212679383
- License:
- Abstract: New research focuses on creating artificial intelligence (AI) solutions for network intrusion detection systems (NIDS), drawing its inspiration from the ever-growing number of intrusions on networked systems, increasing its complexity and intelligibility. Hence, the use of explainable AI (XAI) techniques in real-world intrusion detection systems comes from the requirement to comprehend and elucidate black-box AI models to security analysts. In an effort to meet such requirements, this paper focuses on applying and evaluating White-Box XAI techniques (particularly LRP, IG, and DeepLift) for NIDS via an end-to-end framework for neural network models, using three widely used network intrusion datasets (NSL-KDD, CICIDS-2017, and RoEduNet-SIMARGL2021), assessing its global and local scopes, and examining six distinct assessment measures (descriptive accuracy, sparsity, stability, robustness, efficiency, and completeness). We also compare the performance of white-box XAI methods with black-box XAI methods. The results show that using White-box XAI techniques scores high in robustness and completeness, which are crucial metrics for IDS. Moreover, the source codes for the programs developed for our XAI evaluation framework are available to be improved and used by the research community.
- Abstract(参考訳): 新たな研究は、ネットワーク侵入検知システム(NIDS)のための人工知能(AI)ソリューションの作成に焦点が当てられ、ネットワークシステムへの継続的な侵入からインスピレーションを得て、その複雑さと知性を高めている。
したがって、実世界の侵入検知システムにおける説明可能なAI(XAI)技術の使用は、ブラックボックスAIモデルの理解と解明をセキュリティアナリストに要求することに由来する。
このような要件を満たすために,ニューラルネットワークモデルのためのエンドツーエンドフレームワークを用いたNIDSのWhite-Box XAI技術(特にLRP,IG,DeepLift)の適用と評価,広範に使用されている3つのネットワーク侵入データセット(NSL-KDD,CICIDS-2017,RoEduNet-SIMARGL2021)の使用,グローバルおよびローカルスコープの評価,6つの個別評価尺度(記述精度,空間性,安定性,堅牢性,効率性,完全性)について検討する。
また,White-box XAI法とBlack-box XAI法の比較を行った。
その結果,White-box XAI技術は,IDSにとって重要な指標であるロバスト性や完全性が高いことがわかった。
また、XAI評価フレームワークのために開発されたプログラムのソースコードも、研究コミュニティによって改善され、利用することができる。
関連論文リスト
- AI-Aided Kalman Filters [65.35350122917914]
カルマンフィルタ(KF)とその変種は、信号処理において最も著名なアルゴリズムの一つである。
最近の進歩は、古典的なカルマン型フィルタリングでディープニューラルネットワーク(DNN)を融合させる可能性を示している。
本稿では,KF型アルゴリズムにAIを組み込むための設計アプローチについて,チュートリアル形式で概説する。
論文 参考訳(メタデータ) (2024-10-16T06:47:53Z) - An Adaptive End-to-End IoT Security Framework Using Explainable AI and LLMs [1.9662978733004601]
本稿では,機械学習(ML),説明可能なAI(XAI),大規模言語モデル(LLM)を活用した,リアルタイムIoT攻撃検出および応答のための革新的なフレームワークを提案する。
私たちのエンドツーエンドフレームワークは、モデル開発からデプロイメントへのシームレスな移行を促進するだけでなく、既存の研究でしばしば欠落している現実世界のアプリケーション機能も表しています。
論文 参考訳(メタデータ) (2024-09-20T03:09:23Z) - Explainable AI for Enhancing Efficiency of DL-based Channel Estimation [1.0136215038345013]
人工知能に基づく意思決定のサポートは、将来の6Gネットワークの重要な要素である。
このようなアプリケーションでは、ブラックボックスモデルとしてAIを使用するのは危険で難しい。
本稿では,無線通信におけるチャネル推定を目的とした新しいXAI-CHESTフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-09T16:24:21Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
本稿では,CNN,Recurrent Neural Networks(RNN),Deep Belief Networks(DBN),Deep Neural Networks(DNN),Long Short-Term Memory(LSTM),Autoencoders(AE),Multi-Layer Perceptrons(MLP),Self-Normalizing Networks(SNN),Hybrid Model(ネットワーク侵入検知システム)など,近年のディープラーニング技術の進歩について述べる。
論文 参考訳(メタデータ) (2024-02-26T20:57:35Z) - X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System [2.556190321164248]
Intrusion Detection Systemsにおける機械学習(ML)モデルとディープラーニング(DL)モデルの使用は、不透明な意思決定による信頼の欠如につながっている。
本稿では、グラフニューラルネットワーク(GNN)の構造的利点を活用して、ネットワークトラフィックデータを効率的に処理する新しい説明可能なIDS手法であるX-CBAを提案する。
本手法は、脅威検出の99.47%で高精度に達成し、その分析結果の明確で実用的な説明を提供する。
論文 参考訳(メタデータ) (2024-02-01T18:29:16Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Representation Engineering: A Top-Down Approach to AI Transparency [132.0398250233924]
表現工学の新たな領域(RepE)を特定し,特徴付ける
RepEは、神経細胞や回路ではなく、人口レベルの表現を解析の中心に置く。
これらの手法が、広範囲の安全関連問題に対してどのようにトラクションを提供するかを紹介する。
論文 参考訳(メタデータ) (2023-10-02T17:59:07Z) - Enabling AI-Generated Content (AIGC) Services in Wireless Edge Networks [68.00382171900975]
無線エッジネットワークでは、不正に生成されたコンテンツの送信はネットワークリソースを不要に消費する可能性がある。
我々は、AIGC-as-a-serviceの概念を示し、エッジネットワークにAをデプロイする際の課題について議論する。
最適なASP選択のための深層強化学習可能なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-09T09:30:23Z) - Towards Efficiently Evaluating the Robustness of Deep Neural Networks in
IoT Systems: A GAN-based Method [12.466212057641933]
本稿では,AI-GAN(Attack-Inspired GAN)と呼ばれる新たなフレームワークを提案する。
広範な実験を通じて、AI-GANは攻撃の成功率が高く、既存の手法よりも優れ、生成時間を大幅に短縮する。
論文 参考訳(メタデータ) (2021-11-19T05:54:14Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。