論文の概要: AI Guide Dog: Egocentric Path Prediction on Smartphone
- arxiv url: http://arxiv.org/abs/2501.07957v1
- Date: Tue, 14 Jan 2025 09:21:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:27:26.929799
- Title: AI Guide Dog: Egocentric Path Prediction on Smartphone
- Title(参考訳): AIガイドドッグ:スマートフォン上でのエゴセントリックパス予測
- Authors: Aishwarya Jadhav, Jeffery Cao, Abhishree Shetty, Urvashi Priyam Kumar, Aditi Sharma, Ben Sukboontip, Jayant Sravan Tamarapalli, Jingyi Zhang, Anirudh Koul,
- Abstract要約: 本稿では、視覚障害者のための軽量なエゴセントリックナビゲーション支援システムであるAIGDについて紹介する。
本稿では,GPS信号と高次方向を統合することで,ゴールベースの屋外ナビゲーションを可能にする新しい手法を提案する。
我々は、補助ナビゲーションシステムにおけるさらなる革新を促進するために、方法、データセット、評価、デプロイメントの洞察を提供する。
- 参考スコア(独自算出の注目度): 2.050167020109177
- License:
- Abstract: This paper introduces AI Guide Dog (AIGD), a lightweight egocentric navigation assistance system for visually impaired individuals, designed for real-time deployment on smartphones. AIGD addresses key challenges in blind navigation by employing a vision-only, multi-label classification approach to predict directional commands, ensuring safe traversal across diverse environments. We propose a novel technique to enable goal-based outdoor navigation by integrating GPS signals and high-level directions, while also addressing uncertain multi-path predictions for destination-free indoor navigation. Our generalized model is the first navigation assistance system to handle both goal-oriented and exploratory navigation scenarios across indoor and outdoor settings, establishing a new state-of-the-art in blind navigation. We present methods, datasets, evaluations, and deployment insights to encourage further innovations in assistive navigation systems.
- Abstract(参考訳): 本稿では、視覚障害者のための軽量なエゴセントリックナビゲーション支援システムであるAIGD(AI Guide Dog)について紹介する。
AIGDは視覚のみの多ラベル分類アプローチを採用し、方向指示を予測し、多様な環境をまたがる安全な交通路を確保することで、視覚ナビゲーションにおける重要な課題に対処する。
そこで本稿では,GPS信号と高次方向を統合したゴールベース屋外ナビゲーションを実現するとともに,目的地のない屋内ナビゲーションのための不確実なマルチパス予測に対処する手法を提案する。
我々の一般化されたモデルは、屋内と屋外の両方でゴール志向のナビゲーションシナリオと探索的なナビゲーションシナリオを取り扱う最初のナビゲーション支援システムであり、目視ナビゲーションにおける新しい最先端技術を確立します。
我々は、補助ナビゲーションシステムにおけるさらなる革新を促進するために、方法、データセット、評価、デプロイメントの洞察を提供する。
関連論文リスト
- Long-distance Geomagnetic Navigation in GNSS-denied Environments with Deep Reinforcement Learning [62.186340267690824]
既存の地磁気航法の研究は、事前保存された地図や広範囲な探索に依存しており、探索されていない地域での適用性や航法効率の低下に繋がる。
本稿では,特に長距離地磁気航法における深部強化学習(DRL)に基づくメカニズムについて述べる。
設計されたメカニズムは、プリストアドマップや広範囲で高価な探索アプローチではなく、地磁気ナビゲーションのための磁気受容能力を学ぶようにエージェントを訓練する。
論文 参考訳(メタデータ) (2024-10-21T09:57:42Z) - Hierarchical end-to-end autonomous navigation through few-shot waypoint detection [0.0]
人間のナビゲーションはランドマークと行動の関連によって促進される。
現在の自律ナビゲーション方式は、正確な位置決め装置とアルゴリズム、および環境から収集されたセンサーデータの広範なストリームに依存している。
本研究では,移動ロボットがこれまで知られていなかった環境をナビゲートできる階層型メタ学習手法を提案する。
論文 参考訳(メタデータ) (2024-09-23T00:03:39Z) - Aligning Robot Navigation Behaviors with Human Intentions and Preferences [2.9914612342004503]
この論文は,「自律移動ロボットのナビゲーション行動と人間の意図と嗜好を一致させるために,機械学習手法をどのように利用できるのか?」という疑問に答えることを目的としている。
第一に、この論文は、意図したナビゲーションタスクの人間が提供する実演を模倣することにより、ナビゲーション行動を学ぶための新しいアプローチを導入している。
第二に、この論文は、視覚的な地形認識を自己監督的に学習することで、移動ロボットの地形認識オフロードナビゲーションを強化する2つのアルゴリズムを導入している。
論文 参考訳(メタデータ) (2024-09-16T03:45:00Z) - InstructNav: Zero-shot System for Generic Instruction Navigation in Unexplored Environment [5.43847693345519]
本研究では,汎用的な命令ナビゲーションシステムであるInstructNavを提案する。
InstructNavは、ナビゲーショントレーニングやビルド済みのマップを使わずに、さまざまな命令ナビゲーションタスクを最初に処理する。
InstructNavでは、R2R-CEタスクを初めてゼロショットで完了し、多くのタスク学習方法より優れています。
論文 参考訳(メタデータ) (2024-06-07T12:26:34Z) - Learning Navigational Visual Representations with Semantic Map
Supervision [85.91625020847358]
エージェントの自我中心のビューとセマンティックマップを対比してナビゲーション固有の視覚表現学習法を提案する。
Ego$2$-Map学習は、オブジェクト、構造、遷移などのコンパクトでリッチな情報を、ナビゲーションのためのエージェントのエゴセントリックな表現に転送する。
論文 参考訳(メタデータ) (2023-07-23T14:01:05Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
視覚言語ナビゲーションは、エージェントが環境中をナビゲートするための指示に従う必要があるタスクである。
本研究では,1)環境を抽象化し,長距離航法計画を生成する能力,2)連続環境における障害物回避制御能力の2つの重要なスキルに焦点を当てたETPNavを提案する。
ETPNavは、R2R-CEとRxR-CEデータセットの先行技術よりも10%以上、20%改善されている。
論文 参考訳(メタデータ) (2023-04-06T13:07:17Z) - UAS Navigation in the Real World Using Visual Observation [0.4297070083645048]
本稿では,実世界における長距離ビジュアルナビゲーションのためのUASナビゲーション手法を提案する。
本システムは,強化学習(RL)と画像マッチング手法を組み合わせたシステムである。
我々は,UASが現実のシナリオにおいて最短経路で出発点から数百メートル離れた目的地への航路を学習できることを実証した。
論文 参考訳(メタデータ) (2022-08-25T14:40:53Z) - Augmented reality navigation system for visual prosthesis [67.09251544230744]
反応ナビゲーションと経路計画のソフトウェアを組み込んだ視覚補綴用拡張現実ナビゲーションシステムを提案する。
対象を地図上に配置し、対象の軌道を計画し、対象に示し、障害なく再計画する。
その結果,目標を達成するための時間と距離を減らし,障害物衝突の回数を大幅に減らし,航法性能の向上を図っている。
論文 参考訳(メタデータ) (2021-09-30T09:41:40Z) - Active Visual Information Gathering for Vision-Language Navigation [115.40768457718325]
視覚言語ナビゲーション(VLN)は、エージェントがフォトリアリスティックな環境の中でナビゲーションの指示を行うためのタスクである。
VLNの重要な課題の1つは、曖昧な指示による不確実性を緩和し、環境の観察を不十分にすることで、堅牢なナビゲーションを行う方法である。
この研究は、人間のナビゲーション行動からインスピレーションを得て、よりインテリジェントなVLNポリシーのためのアクティブな情報収集能力を持つエージェントを提供する。
論文 参考訳(メタデータ) (2020-07-15T23:54:20Z) - APPLD: Adaptive Planner Parameter Learning from Demonstration [48.63930323392909]
本稿では,既存のナビゲーションシステムを新しい複雑な環境に適用可能な,適応プランナー学習(Adaptive Planner Learning from Demonstration)のAPPLDを紹介する。
APPLDは異なる環境で異なるナビゲーションシステムを実行する2つのロボットで検証されている。
実験結果から,APPLDはナビゲーションシステムよりも,デフォルトパラメータや専門家パラメータ,さらには人間実証者自体よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-03-31T21:15:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。