論文の概要: An AI-driven framework for rapid and localized optimizations of urban open spaces
- arxiv url: http://arxiv.org/abs/2501.08019v1
- Date: Tue, 14 Jan 2025 11:19:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:27:51.543317
- Title: An AI-driven framework for rapid and localized optimizations of urban open spaces
- Title(参考訳): 都市オープンスペースの迅速かつ局所的最適化のためのAI駆動型フレームワーク
- Authors: Pegah Eshraghi, Arman Nikkhah Dehnavi, Maedeh Mirdamadi, Riccardo Talami, Zahra-Sadat Zomorodian,
- Abstract要約: オープンスペースは、サステナビリティ・ウェルビーングの強化における役割について、ますます認識されている。
本研究では,スカイビューファクタ(SVF)と可視性(可視性)を最適化するAI駆動型フレームワークを導入する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: As urbanization accelerates, open spaces are increasingly recognized for their role in enhancing sustainability and well-being, yet they remain underexplored compared to built spaces. This study introduces an AI-driven framework that integrates machine learning models (MLMs) and explainable AI techniques to optimize Sky View Factor (SVF) and visibility, key spatial metrics influencing thermal comfort and perceived safety in urban spaces. Unlike global optimization methods, which are computationally intensive and impractical for localized adjustments, this framework supports incremental design improvements with lower computational costs and greater flexibility. The framework employs SHapley Adaptive Explanations (SHAP) to analyze feature importance and Counterfactual Explanations (CFXs) to propose minimal design changes. Simulations tested five MLMs, identifying XGBoost as the most accurate, with building width, park area, and heights of surrounding buildings as critical for SVF, and distances from southern buildings as key for visibility. Compared to Genetic Algorithms, which required approximately 15/30 minutes across 3/4 generations to converge, the tested CFX approach achieved optimized results in 1 minute with a 5% RMSE error, demonstrating significantly faster performance and suitability for scalable retrofitting strategies. This interpretable and computationally efficient framework advances urban performance optimization, providing data-driven insights and practical retrofitting solutions for enhancing usability and environmental quality across diverse urban contexts.
- Abstract(参考訳): 都市化が加速するにつれて、オープンスペースは持続可能性と幸福性を高める役割を担っていると認識されている。
本研究では、機械学習モデル(MLM)と説明可能なAI技術を統合し、Sky View Factor(SVF)と可視性(可視性)を最適化するAI駆動フレームワークを紹介する。
局所的な調整には計算集約的で実用的でないグローバル最適化手法とは異なり、このフレームワークは計算コストの低減と柔軟性の向上による漸進的な設計改善をサポートする。
このフレームワークはSHAP (SHapley Adaptive Explanations) を用いて、機能の重要性を分析し、最小限の設計変更を提案する。
シミュレーションは5つのMLMをテストし、XGBoostを最も正確に識別し、ビルの幅、公園面積、周囲の建物の高さをSVFにとって重要なものとし、南の建物からの距離を視認の鍵とした。
3/4世代にわたる約15/30分を要する遺伝的アルゴリズムと比較して、テストされたCFXアプローチは、5%のRMSEエラーで1分で最適化された結果を得た。
この解釈可能で計算効率のよいフレームワークは、様々な都市環境におけるユーザビリティと環境品質を高めるために、データ駆動の洞察と実用的な再適合ソリューションを提供する。
関連論文リスト
- Direct Preference Optimization Using Sparse Feature-Level Constraints [47.15096507230884]
特徴レベルの制約付き優先度最適化は、安定性を確保しつつアライメントプロセスを簡素化するために設計された新しい手法である。
提案手法は、訓練されたスパースオートエンコーダで活性化されるスパース機能と、逐次KL分散の品質を用いて効率を向上する。
論文 参考訳(メタデータ) (2024-11-12T07:54:13Z) - Towards Explainable Evolution Strategies with Large Language Models [0.0]
本稿では,自己適応的進化戦略(ES)と大規模言語モデル(LLM)を統合するアプローチを提案する。
再起動機構を備えた自己適応型ESを用いることで、ベンチマーク関数の難易度を効果的にナビゲートする。
LLMを使用してこれらのログを処理し、簡潔でユーザフレンドリーな要約を生成する。
論文 参考訳(メタデータ) (2024-07-11T09:28:27Z) - City-LEO: Toward Transparent City Management Using LLM with End-to-End Optimization [11.723967356904303]
本稿では,都市管理の効率化と透明性を高めるため,大規模言語モデル(LLM)に基づくエージェント(City-LEO)を提案する。
ヒューマンライクな意思決定プロセスでは、City-LEOは予測と最適化を相乗化するためにエンド・ツー・エンド(E2E)モデルも組み込んでいる。
計算結果から,City-LEOは実規模最適化問題に対するベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2024-06-16T14:25:08Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
本稿では、微調整時のメモリコスト低減のためのソリューションとして、BPフリーゼロオーダー最適化(ZO)への移行を提案する。
従来のZO-SGD法とは異なり、我々の研究はより広い範囲のZO最適化手法に探索を広げる。
本研究は,タスクアライメントの重要性,前方勾配法の役割,アルゴリズムの複雑さと微調整性能のバランスについて,これまで見過ごされてきた最適化原理を明らかにした。
論文 参考訳(メタデータ) (2024-02-18T14:08:48Z) - Efficient Federated Learning via Local Adaptive Amended Optimizer with
Linear Speedup [90.26270347459915]
そこで我々は,グローバル・アダプティカル・アダプティカル・アダプティカル・アダプティカル・アダプティカル・アルゴリズムを提案する。
textitLADAは通信ラウンドを大幅に削減し、複数のベースラインよりも高い精度を実現する。
論文 参考訳(メタデータ) (2023-07-30T14:53:21Z) - Learning Performance-Improving Code Edits [107.21538852090208]
本稿では,大規模言語モデル(LLM)を高レベルプログラム最適化に適用するためのフレームワークを提案する。
まず、競争力のある77,000以上のC++プログラミングサブミッションペアによる、人間のプログラマによるパフォーマンス改善編集のデータセットをキュレートする。
提案手法は,検索をベースとした少数ショットプロンプトとチェーン・オブ・シンクレットを提案し,その微調整には,自己再生に基づく性能条件付き生成と合成データ拡張が含まれる。
論文 参考訳(メタデータ) (2023-02-15T18:59:21Z) - Generative methods for Urban design and rapid solution space exploration [13.222198221605701]
本研究では,テンソル場に基づく都市モデルツールキットの実装について紹介する。
提案手法は,ウォーターフロントエッジ,地形,ビュー軸,既存道路,ランドマーク,非幾何学的設計入力などのコンテキスト制約を符号化する。
これによりユーザーは、モデル入力がほとんどない現実世界の都市に似た、多様な都市ファブリック構成を作成できる。
論文 参考訳(メタデータ) (2022-12-13T17:58:02Z) - Evolving Pareto-Optimal Actor-Critic Algorithms for Generalizability and
Stability [67.8426046908398]
汎用性と安定性は,実世界における強化学習(RL)エージェントの運用において重要な2つの目的である。
本稿では,アクター・クリティック・ロス関数の自動設計法であるMetaPGを提案する。
論文 参考訳(メタデータ) (2022-04-08T20:46:16Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
本稿では,GDC(Generative, Discriminative, and Corrective)の原則を集約する,最適化に着想を得た統合学習フレームワークを提案する。
フレキシブルな組み合わせで最適化モデルを効果的に解くために,3つのプロパゲーティブモジュールを構築した。
低レベル視覚タスクにおける実験は、GDCの有効性と適応性を検証する。
論文 参考訳(メタデータ) (2020-12-10T03:24:53Z) - SASL: Saliency-Adaptive Sparsity Learning for Neural Network
Acceleration [20.92912642901645]
そこで本稿では、さらなる最適化のために、SASL(Saliency-Adaptive Sparsity Learning)アプローチを提案する。
ResNet-50 の 49.7% の FLOP を 0.39% のトップ-1 と 0.05% のトップ-5 の精度で削減できる。
論文 参考訳(メタデータ) (2020-03-12T16:49:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。