Online and Adaptive Parking Availability Mapping: An Uncertainty-Aware
Active Sensing Approach for Connected Vehicles
- URL: http://arxiv.org/abs/2105.00246v1
- Date: Sat, 1 May 2021 13:35:36 GMT
- Title: Online and Adaptive Parking Availability Mapping: An Uncertainty-Aware
Active Sensing Approach for Connected Vehicles
- Authors: Luca Varotto, Angelo Cenedese
- Abstract summary: We propose an online and adaptive scheme for parking availability mapping.
Specifically, we adopt an information-seeking active sensing approach to select the incoming data, thus preserving the onboard storage and processing resources.
We compare the proposed algorithm with several baselines, which attain inferior performance in terms of mapping convergence speed and adaptivity capabilities.
- Score: 1.7259824817932292
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Research on connected vehicles represents a continuously evolving
technological domain, fostered by the emerging Internet of Things (IoT)
paradigm and the recent advances in intelligent transportation systems.
Nowadays, vehicles are platforms capable of generating, receiving and
automatically act based on large amount of data. In the context of assisted
driving, connected vehicle technology provides real-time information about the
surrounding traffic conditions. Such information is expected to improve
drivers' quality of life, for example, by adopting decision making strategies
according to the current parking availability status. In this context, we
propose an online and adaptive scheme for parking availability mapping.
Specifically, we adopt an information-seeking active sensing approach to select
the incoming data, thus preserving the onboard storage and processing
resources; then, we estimate the parking availability through Gaussian Process
Regression. We compare the proposed algorithm with several baselines, which
attain inferior performance in terms of mapping convergence speed and
adaptivity capabilities; moreover, the proposed approach comes at the cost of a
very small computational demand.
Related papers
- SPformer: A Transformer Based DRL Decision Making Method for Connected Automated Vehicles [9.840325772591024]
We propose a CAV decision-making architecture based on transformer and reinforcement learning algorithms.
A learnable policy token is used as the learning medium of the multi-vehicle joint policy.
Our model can make good use of all the state information of vehicles in traffic scenario.
arXiv Detail & Related papers (2024-09-23T15:16:35Z) - Eco-Driving Control of Connected and Automated Vehicles using Neural
Network based Rollout [0.0]
Connected and autonomous vehicles have the potential to minimize energy consumption.
Existing deterministic and methods created to solve the eco-driving problem generally suffer from high computational and memory requirements.
This work proposes a hierarchical multi-horizon optimization framework implemented via a neural network.
arXiv Detail & Related papers (2023-10-16T23:13:51Z) - Trip Planning for Autonomous Vehicles with Wireless Data Transfer Needs
Using Reinforcement Learning [7.23389716633927]
We propose a novel reinforcement learning solution that prioritizes high bandwidth roads to meet a vehicles data transfer requirement.
We compare this approach to traffic-unaware and bandwidth-unaware baselines to show how much better it performs under heterogeneous traffic.
arXiv Detail & Related papers (2023-09-21T23:19:16Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
Vehicle Re-Identification is one of the key elements in city-scale vehicle analytics systems.
Many state-of-the-art solutions for vehicle re-id mostly focus on improving the accuracy on existing re-id benchmarks and often ignore computational complexity.
We propose a simple yet effective hybrid solution empowered by self-supervised training which only uses a single network during inference time.
arXiv Detail & Related papers (2022-05-16T12:14:42Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Learning to Help Emergency Vehicles Arrive Faster: A Cooperative
Vehicle-Road Scheduling Approach [24.505687255063986]
Vehicle-centric scheduling approaches recommend optimal paths for emergency vehicles.
Road-centric scheduling approaches aim to improve the traffic condition and assign a higher priority for EVs to pass an intersection.
We propose LEVID, a cooperative VehIcle-roaD scheduling approach including a real-time route planning module and a collaborative traffic signal control module.
arXiv Detail & Related papers (2022-02-20T10:25:15Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - AI in Smart Cities: Challenges and approaches to enable road vehicle
automation and smart traffic control [56.73750387509709]
SCC ideates on a data-centered society aiming at improving efficiency by automating and optimizing activities and utilities.
This paper describes AI perspectives in SCC and gives an overview of AI-based technologies used in traffic to enable road vehicle automation and smart traffic control.
arXiv Detail & Related papers (2021-04-07T14:31:08Z) - Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement
Learning [52.2663102239029]
We present a new practical framework based on deep reinforcement learning and decision-time planning for real-world vehicle on idle-hailing platforms.
Our approach learns ride-based state-value function using a batch training algorithm with deep value.
We benchmark our algorithm with baselines in a ride-hailing simulation environment to demonstrate its superiority in improving income efficiency.
arXiv Detail & Related papers (2021-03-08T05:34:05Z) - Leveraging Personal Navigation Assistant Systems Using Automated Social
Media Traffic Reporting [1.552282932199974]
We develop an automated traffic alert system based on Natural Language Processing (NLP)
We employ the fine-tuning Bidirectional Representations from Transformers (BERT) language embedding model to filter the related traffic information from social media.
We show how the developed approach can, in real-time, extract traffic-related information and automatically convert them into alerts for navigation assistance applications.
arXiv Detail & Related papers (2020-04-21T02:26:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.