論文の概要: Can Bayesian Neural Networks Explicitly Model Input Uncertainty?
- arxiv url: http://arxiv.org/abs/2501.08285v1
- Date: Tue, 14 Jan 2025 18:00:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:26:23.440729
- Title: Can Bayesian Neural Networks Explicitly Model Input Uncertainty?
- Title(参考訳): ベイズニューラルネットワークは入力不確かさを明示的にモデル化できるか?
- Authors: Matias Valdenegro-Toro, Marco Zullich,
- Abstract要約: 我々は2つの入力ベイズニューラルネットワーク(平均偏差と標準偏差)を構築し、入力不確かさ推定の能力を評価する。
提案手法は,入力不確実性,特にEnsemblesとFlipoutをモデル化できる。
- 参考スコア(独自算出の注目度): 6.9060054915724
- License:
- Abstract: Inputs to machine learning models can have associated noise or uncertainties, but they are often ignored and not modelled. It is unknown if Bayesian Neural Networks and their approximations are able to consider uncertainty in their inputs. In this paper we build a two input Bayesian Neural Network (mean and standard deviation) and evaluate its capabilities for input uncertainty estimation across different methods like Ensembles, MC-Dropout, and Flipout. Our results indicate that only some uncertainty estimation methods for approximate Bayesian NNs can model input uncertainty, in particular Ensembles and Flipout.
- Abstract(参考訳): 機械学習モデルへの入力は、ノイズや不確実性に関連する可能性があるが、しばしば無視され、モデル化されない。
ベイズニューラルネットワークとその近似が入力の不確かさを考慮できるかどうかは不明である。
本稿では,2つの入力ベイズニューラルネットワーク(平均偏差と標準偏差)を構築し,Ensembles,MC-Dropout,Flipoutなどの異なる手法で入力不確かさを推定する能力を評価する。
提案手法は,入力不確実性,特にEnsemblesとFlipoutをモデル化できる。
関連論文リスト
- Unified Uncertainties: Combining Input, Data and Model Uncertainty into a Single Formulation [6.144680854063938]
本稿では,ニューラルネットワークによる入力の不確実性を伝播する手法を提案する。
その結果,入力の不確実性の伝播により,より安定な決定境界が得られることがわかった。
入力の不確かさがモデルを通して伝播すると、出力におけるモデルの不確かさが生じることを議論し、実証する。
論文 参考訳(メタデータ) (2024-06-26T23:13:45Z) - Gaussian Mixture Models for Affordance Learning using Bayesian Networks [50.18477618198277]
Affordancesはアクション、オブジェクト、エフェクト間の関係の基本的な記述である。
本稿では,世界を探究し,その感覚経験から自律的にこれらの余裕を学習するエンボディエージェントの問題にアプローチする。
論文 参考訳(メタデータ) (2024-02-08T22:05:45Z) - Uncertainty in Graph Contrastive Learning with Bayesian Neural Networks [101.56637264703058]
変分ベイズニューラルネットワークは不確実性推定を改善するために有効であることを示す。
比較学習における不確実性の新たな尺度を提案するが、これは異なる正のサンプルによる可能性の相違に基づくものである。
論文 参考訳(メタデータ) (2023-11-30T22:32:24Z) - BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen
Neural Networks [50.15201777970128]
本研究では,凍結モデルに対するベイズIDマッピングを学習し,不確実性の推定を可能にするBayesCapを提案する。
BayesCapは、元のデータセットのごく一部でトレーニングできる、メモリ効率のよいメソッドである。
本稿では,多種多様なアーキテクチャを用いた多種多様なタスクに対する本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-07-14T12:50:09Z) - Variational Neural Networks [88.24021148516319]
本稿では,変分ニューラルネットワーク(VNN)と呼ばれるニューラルネットワークにおける不確実性推定手法を提案する。
VNNは、学習可能なサブレイヤで入力を変換することで、レイヤの出力分布のパラメータを生成する。
不確実性評価実験において、VNNはモンテカルロ・ドロップアウトやベイズ・バイ・バックプロパゲーション法よりも優れた不確実性が得られることを示す。
論文 参考訳(メタデータ) (2022-07-04T15:41:02Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Robust uncertainty estimates with out-of-distribution pseudo-inputs
training [0.0]
我々は、信頼性のあるデータを与えられていない不確実性予測器を明示的に訓練することを提案する。
データ無しでは訓練できないので、入力空間の情報的低密度領域において擬似入力を生成するメカニズムを提供する。
総合的な評価により、様々なタスクにおける最先端性能を維持しながら、不確実性の頑健かつ解釈可能な予測が得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T17:15:07Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Understanding Uncertainty in Bayesian Deep Learning [0.0]
我々は,NLMの従来のトレーニング手順が,データスカース領域における不確実性を大幅に過小評価できることを示した。
本稿では,有用な予測の不確実性を捉えるとともに,ドメイン知識の組み入れを可能にする新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-05-21T19:22:17Z) - Getting a CLUE: A Method for Explaining Uncertainty Estimates [30.367995696223726]
微分可能確率モデルからの不確実性推定を解釈する新しい手法を提案する。
提案手法は,データ多様体上に保持しながら,入力の変更方法を示す。
論文 参考訳(メタデータ) (2020-06-11T21:53:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。