論文の概要: A Similarity Measure Between Functions with Applications to Statistical Learning and Optimization
- arxiv url: http://arxiv.org/abs/2501.08317v1
- Date: Tue, 14 Jan 2025 18:52:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:26:18.160202
- Title: A Similarity Measure Between Functions with Applications to Statistical Learning and Optimization
- Title(参考訳): 統計的学習と最適化への応用のための関数間の類似度測定
- Authors: Chengpiao Huang, Kaizheng Wang,
- Abstract要約: 2つの関数間の類似性の新たな尺度を示す。
2つの函数の準最適ギャップが相互にどのように変換するかを定量化し、機能的類似性のいくつかの既存の概念を統一する。
- 参考スコア(独自算出の注目度): 1.1510009152620668
- License:
- Abstract: In this note, we present a novel measure of similarity between two functions. It quantifies how the sub-optimality gaps of two functions convert to each other, and unifies several existing notions of functional similarity. We show that it has convenient operation rules, and illustrate its use in empirical risk minimization and non-stationary online optimization.
- Abstract(参考訳): 本稿では,2つの関数間の類似性の新たな尺度を提案する。
2つの函数の準最適ギャップが相互にどのように変換するかを定量化し、機能的類似性のいくつかの既存の概念を統一する。
提案手法は, 操作ルールが便利であること, 経験的リスク最小化および非定常オンライン最適化における使用例を示す。
関連論文リスト
- Two-time second-order correlation function [0.0]
微分方程式,コヒーレント状態プロパゲータ,準統計分布関数などによる2次相関関数の導出について述べる。
論文 参考訳(メタデータ) (2024-06-15T07:59:39Z) - Statistical Inference of Optimal Allocations I: Regularities and their Implications [3.904240476752459]
まず、ソート作用素の一般性質の詳細な解析を通して、値関数のアダマール微分可能性(英語版)を導出する。
アダマール微分可能性の結果に基づいて、関数デルタ法を用いて値関数プロセスの特性を直接導出する方法を実証する。
論文 参考訳(メタデータ) (2024-03-27T04:39:13Z) - Functional Flow Matching [14.583771853250008]
本稿では,最近導入されたフローマッチングモデルを一般化した関数空間生成モデルを提案する。
我々の手法は確率やシミュレーションに頼らず、関数空間の設定に適している。
我々は,FFM法が最近提案した関数空間生成モデルより優れていることを示す実世界のベンチマーク実験を行った。
論文 参考訳(メタデータ) (2023-05-26T19:07:47Z) - Using Affine Combinations of BBOB Problems for Performance Assessment [0.9281671380673306]
本稿では,アフィン関数の組み合わせを用いて最適化アルゴリズムの挙動を解析する方法を示す。
特に,複合問題間の重み付けを変化させることで,付加的なグローバル構造の影響についての洞察を得ることができることを強調する。
論文 参考訳(メタデータ) (2023-03-08T13:37:55Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
本稿では,主観的最適度と関連するリスク割り当ての公平性に着目し,重要な理論的側面について論じる。
私たちが提供しているアルゴリズムは、予備項の学習、二重表現の最適化、およびそれに対応する公正なリスク割り当てを可能にします。
論文 参考訳(メタデータ) (2023-02-02T22:16:49Z) - Nuisance Function Tuning and Sample Splitting for Optimal Doubly Robust Estimation [5.018363990542611]
二重頑健な非パラメトリック関数に対する収束率の最適値を求めるために、ニュアンス関数を推定する方法の問題点を考察する。
プラグインおよび一階偏り補正された推定器は、ニュアンス関数のすべてのH"古い滑らか度クラスに対して収束の最小値が得られることを示す。
論文 参考訳(メタデータ) (2022-12-30T18:17:06Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
歴史的データを用いて意思決定戦略を最適化することを目的としたオフライン強化学習は、現実の応用に広く適用されている。
微分関数クラス近似(DFA)を用いたオフライン強化学習の検討から一歩踏み出した。
最も重要なことは、悲観的な適合Q-ラーニングアルゴリズムを解析することにより、オフライン微分関数近似が有効であることを示すことである。
論文 参考訳(メタデータ) (2022-10-03T07:59:42Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Interactive Fusion of Multi-level Features for Compositional Activity
Recognition [100.75045558068874]
インタラクティブな融合によってこの目標を達成する新しいフレームワークを提案する。
本フレームワークは,位置から出現までの特徴抽出,意味的特徴の相互作用,意味から位置への予測という3つのステップで実装する。
我々は,2つの行動認識データセット,SomethingとCharadesに対するアプローチを評価した。
論文 参考訳(メタデータ) (2020-12-10T14:17:18Z) - Piecewise Linear Regression via a Difference of Convex Functions [50.89452535187813]
本稿では,データに対する凸関数(DC関数)の差を利用した線形回帰手法を提案する。
実際に実装可能であることを示すとともに,実世界のデータセット上で既存の回帰/分類手法に匹敵する性能を有することを実証的に検証した。
論文 参考訳(メタデータ) (2020-07-05T18:58:47Z) - A Multi-Agent Primal-Dual Strategy for Composite Optimization over
Distributed Features [52.856801164425086]
目的関数を滑らかな局所関数と凸(おそらく非滑らか)結合関数の和とするマルチエージェント共有最適化問題について検討する。
論文 参考訳(メタデータ) (2020-06-15T19:40:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。