論文の概要: Nuisance Function Tuning and Sample Splitting for Optimal Doubly Robust Estimation
- arxiv url: http://arxiv.org/abs/2212.14857v3
- Date: Tue, 13 Aug 2024 00:24:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 23:38:51.698230
- Title: Nuisance Function Tuning and Sample Splitting for Optimal Doubly Robust Estimation
- Title(参考訳): 最適2倍ロバスト推定のためのニュアンス関数チューニングとサンプル分割
- Authors: Sean McGrath, Rajarshi Mukherjee,
- Abstract要約: 二重頑健な非パラメトリック関数に対する収束率の最適値を求めるために、ニュアンス関数を推定する方法の問題点を考察する。
プラグインおよび一階偏り補正された推定器は、ニュアンス関数のすべてのH"古い滑らか度クラスに対して収束の最小値が得られることを示す。
- 参考スコア(独自算出の注目度): 5.018363990542611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimators of doubly robust functionals typically rely on estimating two complex nuisance functions, such as the propensity score and conditional outcome mean for the average treatment effect functional. We consider the problem of how to estimate nuisance functions to obtain optimal rates of convergence for a doubly robust nonparametric functional that has witnessed applications across the causal inference and conditional independence testing literature. For several plug-in estimators and a first-order bias-corrected estimator, we illustrate the interplay between different tuning parameter choices for the nuisance function estimators and sample splitting strategies on the optimal rate of estimating the functional of interest. For each of these estimators and each sample splitting strategy, we show the necessity to either undersmooth or oversmooth the nuisance function estimators under low regularity conditions to obtain optimal rates of convergence for the functional of interest. Unlike the existing literature, we show that plug-in and first-order biased-corrected estimators can achieve minimax rates of convergence across all H\"older smoothness classes of the nuisance functions by careful combinations of sample splitting and nuisance function tuning strategies.
- Abstract(参考訳): 二重頑健な汎函数の推定子は、平均処理効果汎関数に対する確率スコアと条件結果平均のような2つの複素ニュアンス関数を推定することに依存する。
因果推論と条件付き独立性試験の文献にまたがる応用を目撃した二重頑健な非パラメトリック関数に対して、ニュアンス関数を最適収束率で推定する方法の問題点を考察する。
いくつかのプラグイン推定器と1次バイアス補正推定器に対して、ニュアンス関数推定器の異なるチューニングパラメータ選択と、興味の関数を推定する最適な速度でのサンプル分割戦略との相互作用を解説する。
これらの各推定器および各サンプル分割戦略について、興味の関数に対する最適収束率を得るために、低規則性条件下でのニュアンス関数推定器のアンダースムースまたはオーバースムースのいずれかの必要性を示す。
既存の文献と異なり、プラグインと一階偏り補正された推定器は、サンプル分割とニュアンス関数チューニング戦略を慎重に組み合わせることで、ニュアンス関数のすべてのH\"古い滑らか度クラスにまたがる収束の最小値が得られることを示す。
関連論文リスト
- Two-Stage Nuisance Function Estimation for Causal Mediation Analysis [8.288031125057524]
媒介関数の作用関数に基づく推定器のバイアスの構造において,それらが果たす役割に基づいてニュアンス関数を推定する2段階推定手法を提案する。
本稿では,提案手法の解析と,関心パラメータの推定器の整合性と正規性に関する十分な条件について述べる。
論文 参考訳(メタデータ) (2024-03-31T16:38:48Z) - Statistical Inference of Optimal Allocations I: Regularities and their Implications [3.904240476752459]
まず、ソート作用素の一般性質の詳細な解析を通して、値関数のアダマール微分可能性(英語版)を導出する。
アダマール微分可能性の結果に基づいて、関数デルタ法を用いて値関数プロセスの特性を直接導出する方法を実証する。
論文 参考訳(メタデータ) (2024-03-27T04:39:13Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Statistical Optimality of Divide and Conquer Kernel-based Functional
Linear Regression [1.7227952883644062]
本稿では,対象関数が基礎となるカーネル空間に存在しないシナリオにおいて,分割・コンカレント推定器の収束性能について検討する。
分解に基づくスケーラブルなアプローチとして、関数線形回帰の分割・収束推定器は、時間とメモリにおけるアルゴリズムの複雑さを大幅に減らすことができる。
論文 参考訳(メタデータ) (2022-11-20T12:29:06Z) - Off-policy estimation of linear functionals: Non-asymptotic theory for
semi-parametric efficiency [59.48096489854697]
観測データに基づいて線形汎関数を推定する問題は、因果推論と包帯文献の両方において標準的である。
このような手順の平均二乗誤差に対して非漸近上界を証明した。
非漸近的局所ミニマックス下限をマッチングすることにより、有限標本のインスタンス依存最適性を確立する。
論文 参考訳(メタデータ) (2022-09-26T23:50:55Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
統計的汎関数に対するガトー微分を有限差分法で近似する構成的アルゴリズムについて検討する。
本研究では,確率分布を事前知識がないが,データから推定する必要がある場合について検討する。
論文 参考訳(メタデータ) (2022-08-29T16:16:22Z) - Inference on Strongly Identified Functionals of Weakly Identified
Functions [71.42652863687117]
本研究では,ニュアンス関数が存在しない場合でも,関数を強く識別するための新しい条件について検討する。
本稿では,プライマリおよびデバイアスのニュアンス関数に対するペナル化ミニマックス推定器を提案する。
論文 参考訳(メタデータ) (2022-08-17T13:38:31Z) - Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals [16.768606469968113]
もともと導入された二重頑健なモーメント関数のクラスを考える(Robins et al., 2008)。
このモーメント関数は、ニュアンス関数の推定方程式の構築に使用できることを実証する。
ニュアンス関数の収束速度は、統計学習理論の現代的な手法を用いて解析される。
論文 参考訳(メタデータ) (2021-04-07T05:52:15Z) - Causal Inference Under Unmeasured Confounding With Negative Controls: A
Minimax Learning Approach [84.29777236590674]
すべての共同設立者が観察されず、代わりに負の制御が利用可能である場合の因果パラメータの推定について検討する。
最近の研究は、2つのいわゆるブリッジ関数による同定と効率的な推定を可能にする方法を示している。
論文 参考訳(メタデータ) (2021-03-25T17:59:19Z) - Equivalence of Convergence Rates of Posterior Distributions and Bayes
Estimators for Functions and Nonparametric Functionals [4.375582647111708]
非パラメトリック回帰におけるガウス過程の先行したベイズ法の後部収縮率について検討する。
カーネルの一般クラスに対しては、回帰関数とその微分の後方測度の収束率を確立する。
我々の証明は、ある条件下では、ベイズ推定器の任意の収束率に対して、後部分布の同じ収束率に対応することを示す。
論文 参考訳(メタデータ) (2020-11-27T19:11:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。