論文の概要: Statistical Inference of Optimal Allocations I: Regularities and their Implications
- arxiv url: http://arxiv.org/abs/2403.18248v2
- Date: Sun, 7 Apr 2024 08:40:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 00:27:26.606889
- Title: Statistical Inference of Optimal Allocations I: Regularities and their Implications
- Title(参考訳): 最適配置の統計的推測 I:規則性とその意味
- Authors: Kai Feng, Han Hong,
- Abstract要約: まず、ソート作用素の一般性質の詳細な解析を通して、値関数のアダマール微分可能性(英語版)を導出する。
アダマール微分可能性の結果に基づいて、関数デルタ法を用いて値関数プロセスの特性を直接導出する方法を実証する。
- 参考スコア(独自算出の注目度): 3.904240476752459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we develop a functional differentiability approach for solving statistical optimal allocation problems. We first derive Hadamard differentiability of the value function through a detailed analysis of the general properties of the sorting operator. Central to our framework are the concept of Hausdorff measure and the area and coarea integration formulas from geometric measure theory. Building on our Hadamard differentiability results, we demonstrate how the functional delta method can be used to directly derive the asymptotic properties of the value function process for binary constrained optimal allocation problems, as well as the two-step ROC curve estimator. Moreover, leveraging profound insights from geometric functional analysis on convex and local Lipschitz functionals, we obtain additional generic Fr\'echet differentiability results for the value functions of optimal allocation problems. These compelling findings motivate us to study carefully the first order approximation of the optimal social welfare. In this paper, we then present a double / debiased estimator for the value functions. Importantly, the conditions outlined in the Hadamard differentiability section validate the margin assumption from the statistical classification literature employing plug-in methods that justifies a faster convergence rate.
- Abstract(参考訳): 本稿では,統計的最適割り当て問題を解くための機能的微分可能性アプローチを開発する。
まず、ソート作用素の一般性質の詳細な解析を通して、値関数のアダマール微分可能性(英語版)を導出する。
我々の枠組みの中心はハウスドルフ測度の概念と幾何学的測度理論の領域と余積積分公式である。
アダマール微分可能性の結果に基づいて、2段階のROC曲線推定器と同様に、関数デルタ法を用いて2段階の制約付き最適割り当て問題に対する値関数プロセスの漸近特性を直接導出する方法を実証する。
さらに、凸関数と局所リプシッツ関数の幾何学的汎関数解析から深い洞察を生かし、最適割り当て問題の値関数に対する追加の一般Fr\echet微分可能性結果を得る。
これらの魅力的な発見は、最適社会福祉の第一次近似を慎重に研究する動機となっている。
本稿では,値関数に対する2重/脱バイアス推定器を提案する。
重要なことは、アダマール微分可能性セクションで概説された条件は、より速い収束率を正当化するプラグイン法を用いて統計分類文献からマージンの仮定を検証することである。
関連論文リスト
- Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Statistical Optimality of Divide and Conquer Kernel-based Functional
Linear Regression [1.7227952883644062]
本稿では,対象関数が基礎となるカーネル空間に存在しないシナリオにおいて,分割・コンカレント推定器の収束性能について検討する。
分解に基づくスケーラブルなアプローチとして、関数線形回帰の分割・収束推定器は、時間とメモリにおけるアルゴリズムの複雑さを大幅に減らすことができる。
論文 参考訳(メタデータ) (2022-11-20T12:29:06Z) - Off-policy estimation of linear functionals: Non-asymptotic theory for
semi-parametric efficiency [59.48096489854697]
観測データに基づいて線形汎関数を推定する問題は、因果推論と包帯文献の両方において標準的である。
このような手順の平均二乗誤差に対して非漸近上界を証明した。
非漸近的局所ミニマックス下限をマッチングすることにより、有限標本のインスタンス依存最適性を確立する。
論文 参考訳(メタデータ) (2022-09-26T23:50:55Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
統計的汎関数に対するガトー微分を有限差分法で近似する構成的アルゴリズムについて検討する。
本研究では,確率分布を事前知識がないが,データから推定する必要がある場合について検討する。
論文 参考訳(メタデータ) (2022-08-29T16:16:22Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
線形汎関数に対するバイアス認識設計のためのアルゴリズムを提供する。
準ガウス雑音下での固定および適応設計に対する漸近的でない信頼集合を導出する。
論文 参考訳(メタデータ) (2022-05-26T20:56:25Z) - From Majorization to Interpolation: Distributionally Robust Learning
using Kernel Smoothing [1.2891210250935146]
確率指標に基づく分布的ロバスト最適化(DRO)の関数近似の側面を検討する。
本稿では,滑らかな関数近似と畳み込みに基づく堅牢な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-16T22:25:18Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Equivalence of Convergence Rates of Posterior Distributions and Bayes
Estimators for Functions and Nonparametric Functionals [4.375582647111708]
非パラメトリック回帰におけるガウス過程の先行したベイズ法の後部収縮率について検討する。
カーネルの一般クラスに対しては、回帰関数とその微分の後方測度の収束率を確立する。
我々の証明は、ある条件下では、ベイズ推定器の任意の収束率に対して、後部分布の同じ収束率に対応することを示す。
論文 参考訳(メタデータ) (2020-11-27T19:11:56Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。