ADAM: An AI Reasoning and Bioinformatics Model for Alzheimer's Disease Detection and Microbiome-Clinical Data Integration
- URL: http://arxiv.org/abs/2501.08324v2
- Date: Fri, 02 May 2025 03:07:14 GMT
- Title: ADAM: An AI Reasoning and Bioinformatics Model for Alzheimer's Disease Detection and Microbiome-Clinical Data Integration
- Authors: Ziyuan Huang, Vishaldeep Kaur Sekhon, Roozbeh Sadeghian, Maria L. Vaida, Cynthia Jo, Doyle Ward, Vanni Bucci, John P. Haran,
- Abstract summary: Alzheimer's Disease Analysis Model (ADAM) is a multi-agent reasoning large language model (LLM) framework designed to integrate and analyze multimodal data.<n>ADAM produces insights from diverse data sources and contextualizes the findings with literature-driven evidence.
- Score: 4.693680473621709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alzheimer's Disease Analysis Model (ADAM) is a multi-agent reasoning large language model (LLM) framework designed to integrate and analyze multimodal data, including microbiome profiles, clinical datasets, and external knowledge bases, to enhance the understanding and classification of Alzheimer's disease (AD). By leveraging the agentic system with LLM, ADAM produces insights from diverse data sources and contextualizes the findings with literature-driven evidence. A comparative evaluation with XGBoost revealed a significantly improved mean F1 score and significantly reduced variance for ADAM, highlighting its robustness and consistency, particularly when utilizing human biological data. Although currently tailored for binary classification tasks with two data modalities, future iterations will aim to incorporate additional data types, such as neuroimaging and peripheral biomarkers, and expand them to predict disease progression, thereby broadening ADAM's scalability and applicability in AD research and diagnostic applications.
Related papers
- Cross-modal Causal Intervention for Alzheimer's Disease Prediction [12.485088483891843]
We propose a visual-language causal intervention framework named Alzheimer's Disease Prediction with Cross-modal Causal Intervention.<n>Our framework implicitly eliminates confounders through causal intervention.<n> Experimental results demonstrate the outstanding performance of our method in distinguishing CN/MCI/AD cases.
arXiv Detail & Related papers (2025-07-18T14:21:24Z) - Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - AD-GPT: Large Language Models in Alzheimer's Disease [22.79214699749541]
Large language models (LLMs) have emerged as powerful tools for medical information retrieval.<n>But their accuracy and depth remain limited in specialized domains such as Alzheimer's disease (AD)<n>We introduce AD-GPT, a domain-specific generative pre-trained transformer designed to enhance the retrieval and analysis of AD-related genetic and neurobiological information.
arXiv Detail & Related papers (2025-04-03T22:49:10Z) - Graph Kolmogorov-Arnold Networks for Multi-Cancer Classification and Biomarker Identification, An Interpretable Multi-Omics Approach [36.92842246372894]
Multi-Omics Graph Kolmogorov-Arnold Network (MOGKAN) is a deep learning framework that utilizes messenger-RNA, micro-RNA sequences, and DNA methylation samples.
By integrating multi-omics data with graph-based deep learning, our proposed approach demonstrates robust predictive performance and interpretability.
arXiv Detail & Related papers (2025-03-29T02:14:05Z) - AlzheimerRAG: Multimodal Retrieval Augmented Generation for PubMed articles [2.4063592468412276]
Multimodal Retrieval-Augmented Generation (RAG) applications are promising for their capability to combine the strengths of information retrieval and generative models.<n>This paper introduces AlzheimerRAG, a Multimodal RAG pipeline tool for biomedical research use cases.
arXiv Detail & Related papers (2024-12-21T16:59:00Z) - On the Within-class Variation Issue in Alzheimer's Disease Detection [60.08015780474457]
Alzheimer's Disease (AD) detection employs machine learning classification models to distinguish between individuals with AD and those without.<n>In this work, we found using a sample score estimator can generate sample-specific soft scores aligning with cognitive scores.<n>We propose two simple yet effective methods: Soft Target Distillation (SoTD) and Instance-level Re-balancing (InRe)
arXiv Detail & Related papers (2024-09-22T02:06:05Z) - GFE-Mamba: Mamba-based AD Multi-modal Progression Assessment via Generative Feature Extraction from MCI [5.355943545567233]
Alzheimer's Disease (AD) is an irreversible neurodegenerative disorder that often progresses from Mild Cognitive Impairment (MCI)
We introduce GFE-Mamba, a classifier based on Generative Feature Extraction (GFE)
It integrates data from assessment scales, MRI, and PET, enabling deeper multimodal fusion.
Our experimental results demonstrate that the GFE-Mamba model is effective in predicting the conversion from MCI to AD.
arXiv Detail & Related papers (2024-07-22T15:22:33Z) - An interpretable generative multimodal neuroimaging-genomics framework for decoding Alzheimer's disease [13.213387075528017]
Alzheimer's disease (AD) is the most prevalent form of dementia with a progressive decline in cognitive abilities.
We leveraged structural and functional MRI to investigate the disease-induced GM and functional network connectivity changes.
We propose a novel DL-based classification framework where a generative module employing Cycle GAN was adopted for imputing missing data.
arXiv Detail & Related papers (2024-06-19T07:31:47Z) - Intelligent Diagnosis of Alzheimer's Disease Based on Machine Learning [24.467566885575998]
This study is based on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset.
It aims to explore early detection and disease progression in Alzheimer's disease (AD)
arXiv Detail & Related papers (2024-02-13T15:43:30Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self
Attention for multi-omics integration with incomplete multi-omics data [47.2764293508916]
Integration of heterogeneous and high-dimensional multi-omics data is becoming increasingly important in understanding genetic data.
One obstacle faced when performing multi-omics data integration is the existence of unpaired multi-omics data due to instrument sensitivity and cost.
We propose a deep learning method for multi-omics integration with incomplete data by Cross-omics Linked unified embedding with Contrastive Learning and Self Attention.
arXiv Detail & Related papers (2023-04-12T00:22:18Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - Tensor-Based Multi-Modality Feature Selection and Regression for
Alzheimer's Disease Diagnosis [25.958167380664083]
We propose a novel tensor-based multi-modality feature selection and regression method for diagnosis and biomarker identification of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI)
We present the practical advantages of our method for the analysis of ADNI data using three imaging modalities.
arXiv Detail & Related papers (2022-09-23T02:17:27Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
We introduce several ways to perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms such as Illumina and PacBio.
We show that some simulation-based approaches are more robust (and accurate) than others for specific embedding methods to certain adversarial attacks to the input sequences.
arXiv Detail & Related papers (2022-07-18T19:16:56Z) - Unsupervised Domain Adaptation for Dysarthric Speech Detection via
Domain Adversarial Training and Mutual Information Minimization [52.82138296332476]
This paper makes a first attempt to formulate cross-domain Dysarthric speech detection (DSD) as an unsupervised domain adaptation problem.
We propose a multi-task learning strategy, including dysarthria presence classification (DPC), domain adversarial training ( DAT) and mutual information minimization (MIM)
Experiments show that the incorporation of UDA attains absolute increases of 22.2% and 20.0% respectively in utterance-level weighted average recall and speaker-level accuracy.
arXiv Detail & Related papers (2021-06-18T13:34:36Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.