Operator Learning for Reconstructing Flow Fields from Sparse Measurements: an Energy Transformer Approach
- URL: http://arxiv.org/abs/2501.08339v1
- Date: Thu, 02 Jan 2025 19:24:19 GMT
- Title: Operator Learning for Reconstructing Flow Fields from Sparse Measurements: an Energy Transformer Approach
- Authors: Qian Zhang, Dmitry Krotov, George Em Karniadakis,
- Abstract summary: We propose a novel operator learning framework for solving reconstruction problems by using the Energy Transformer.
We formulate reconstruction as a mapping from incomplete observed data to full reconstructed fields.
Results demonstrate the ability of ET to accurately reconstruct complex flow fields from highly incomplete data.
- Score: 8.156288231122543
- License:
- Abstract: Machine learning methods have shown great success in various scientific areas, including fluid mechanics. However, reconstruction problems, where full velocity fields must be recovered from partial observations, remain challenging. In this paper, we propose a novel operator learning framework for solving reconstruction problems by using the Energy Transformer (ET), an architecture inspired by associative memory models. We formulate reconstruction as a mapping from incomplete observed data to full reconstructed fields. The method is validated on three fluid mechanics examples using diverse types of data: (1) unsteady 2D vortex street in flow past a cylinder using simulation data; (2) high-speed under-expanded impinging supersonic jets impingement using Schlieren imaging; and (3) 3D turbulent jet flow using particle tracking. The results demonstrate the ability of ET to accurately reconstruct complex flow fields from highly incomplete data (90\% missing), even for noisy experimental measurements, with fast training and inference on a single GPU. This work provides a promising new direction for tackling reconstruction problems in fluid mechanics and other areas in mechanics, geophysics, weather prediction, and beyond.
Related papers
- Graph Transformers for inverse physics: reconstructing flows around arbitrary 2D airfoils [0.0]
We introduce a Graph Transformer framework that serves as a general inverse physics engine on meshes.
We evaluate this framework on a dataset of steady-state RANS simulations around diverse airfoil geometries.
We conduct experiments and provide insights into the relative importance of local geometric processing and global attention mechanisms in mesh-based inverse problems.
arXiv Detail & Related papers (2025-01-28T17:06:09Z) - WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
Deep image registration has demonstrated exceptional accuracy and fast inference.
Recent advances have adopted either multiple cascades or pyramid architectures to estimate dense deformation fields in a coarse-to-fine manner.
We introduce a model-driven WiNet that incrementally estimates scale-wise wavelet coefficients for the displacement/velocity field across various scales.
arXiv Detail & Related papers (2024-07-18T11:51:01Z) - GIC: Gaussian-Informed Continuum for Physical Property Identification and Simulation [60.33467489955188]
This paper studies the problem of estimating physical properties (system identification) through visual observations.
To facilitate geometry-aware guidance in physical property estimation, we introduce a novel hybrid framework.
We propose a new dynamic 3D Gaussian framework based on motion factorization to recover the object as 3D Gaussian point sets.
In addition to the extracted object surfaces, the Gaussian-informed continuum also enables the rendering of object masks during simulations.
arXiv Detail & Related papers (2024-06-21T07:37:17Z) - Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video [58.043569985784806]
We introduce latent intuitive physics, a transfer learning framework for physics simulation.
It can infer hidden properties of fluids from a single 3D video and simulate the observed fluid in novel scenes.
We validate our model in three ways: (i) novel scene simulation with the learned visual-world physics, (ii) future prediction of the observed fluid dynamics, and (iii) supervised particle simulation.
arXiv Detail & Related papers (2024-06-18T16:37:44Z) - RoHM: Robust Human Motion Reconstruction via Diffusion [58.63706638272891]
RoHM is an approach for robust 3D human motion reconstruction from monocular RGB(-D) videos.
It conditioned on noisy and occluded input data, reconstructs complete, plausible motions in consistent global coordinates.
Our method outperforms state-of-the-art approaches qualitatively and quantitatively, while being faster at test time.
arXiv Detail & Related papers (2024-01-16T18:57:50Z) - The Drunkard's Odometry: Estimating Camera Motion in Deforming Scenes [79.00228778543553]
This dataset is the first large set of exploratory camera trajectories with ground truth inside 3D scenes.
Simulations in realistic 3D buildings lets us obtain a vast amount of data and ground truth labels.
We present a novel deformable odometry method, dubbed the Drunkard's Odometry, which decomposes optical flow estimates into rigid-body camera motion.
arXiv Detail & Related papers (2023-06-29T13:09:31Z) - Eagle: Large-Scale Learning of Turbulent Fluid Dynamics with Mesh
Transformers [23.589419066824306]
Estimating fluid dynamics is a notoriously hard problem to solve.
We introduce a new model, method and benchmark for the problem.
We show that our transformer outperforms state-of-the-art performance on, both, existing synthetic and real datasets.
arXiv Detail & Related papers (2023-02-16T12:59:08Z) - FR3D: Three-dimensional Flow Reconstruction and Force Estimation for
Unsteady Flows Around Extruded Bluff Bodies via Conformal Mapping Aided
Convolutional Autoencoders [0.0]
We propose a convolutional autoencoder based neural network model, dubbed FR3D, which enables flow reconstruction.
We show that the FR3D model reconstructs pressure and velocity components with a few percentage points of error.
arXiv Detail & Related papers (2023-02-03T15:13:57Z) - SSMTL++: Revisiting Self-Supervised Multi-Task Learning for Video
Anomaly Detection [108.57862846523858]
We revisit the self-supervised multi-task learning framework, proposing several updates to the original method.
We modernize the 3D convolutional backbone by introducing multi-head self-attention modules.
In our attempt to further improve the model, we study additional self-supervised learning tasks, such as predicting segmentation maps.
arXiv Detail & Related papers (2022-07-16T19:25:41Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
A physics-constrained deep learning model is developed for solving multiphase flow in 3D heterogeneous porous media.
The model is trained from physics-based simulation data and emulates the physics process.
The model performs prediction with a speedup of 1400 times compared to physics-based simulations.
arXiv Detail & Related papers (2021-04-30T02:15:01Z) - Teaching the Incompressible Navier-Stokes Equations to Fast Neural
Surrogate Models in 3D [4.981834139548193]
In this work, we present significant extensions to a recently proposed deep learning framework, which addresses the aforementioned challenges in 2D.
We go from 2D to 3D and propose an efficient architecture to cope with the high demands of 3D grids in terms of memory and computational complexity.
Our method indicates strong improvements in terms of accuracy, speed and generalization capabilities over current 3D NN-based fluid models.
arXiv Detail & Related papers (2020-12-22T09:21:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.