論文の概要: Religious Bias Landscape in Language and Text-to-Image Models: Analysis, Detection, and Debiasing Strategies
- arxiv url: http://arxiv.org/abs/2501.08441v1
- Date: Tue, 14 Jan 2025 21:10:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:52:48.375917
- Title: Religious Bias Landscape in Language and Text-to-Image Models: Analysis, Detection, and Debiasing Strategies
- Title(参考訳): 言語・テクスト・ツー・イメージモデルにおける宗教バイアスのランドスケープ:分析・検出・偏見
- Authors: Ajwad Abrar, Nafisa Tabassum Oeshy, Mohsinul Kabir, Sophia Ananiadou,
- Abstract要約: 言語モデルの普及は、言語モデル固有のバイアスに対する批判的な検査の必要性を強調している。
本研究では,言語モデルとテキスト・ツー・イメージ生成モデルの両方において,宗教的バイアスを系統的に研究する。
- 参考スコア(独自算出の注目度): 16.177734242454193
- License:
- Abstract: Note: This paper includes examples of potentially offensive content related to religious bias, presented solely for academic purposes. The widespread adoption of language models highlights the need for critical examinations of their inherent biases, particularly concerning religion. This study systematically investigates religious bias in both language models and text-to-image generation models, analyzing both open-source and closed-source systems. We construct approximately 400 unique, naturally occurring prompts to probe language models for religious bias across diverse tasks, including mask filling, prompt completion, and image generation. Our experiments reveal concerning instances of underlying stereotypes and biases associated disproportionately with certain religions. Additionally, we explore cross-domain biases, examining how religious bias intersects with demographic factors such as gender, age, and nationality. This study further evaluates the effectiveness of targeted debiasing techniques by employing corrective prompts designed to mitigate the identified biases. Our findings demonstrate that language models continue to exhibit significant biases in both text and image generation tasks, emphasizing the urgent need to develop fairer language models to achieve global acceptability.
- Abstract(参考訳): 注:本稿は、学術的目的にのみ提示される宗教的偏見に関連する潜在的攻撃的内容の例を含む。
言語モデルの普及は、その固有のバイアス、特に宗教に関する批判的な検査の必要性を強調している。
本研究では,言語モデルとテキスト・ツー・イメージ生成モデルの両方における宗教的バイアスを系統的に研究し,オープンソース・クローズド・ソース・システムの両方を解析する。
マスクフィリング,プロンプト補完,画像生成など,様々なタスクにまたがる宗教バイアスのための言語モデルを探索するために,約400のユニークな自然発生プロンプトを構築した。
本実験は,特定の宗教と相違する基礎となるステレオタイプと偏見の事例を明らかにする。
さらに、宗教的な偏見が、性別、年齢、国籍などの人口統計要因とどのように交わるかを考察する。
本研究は、特定バイアスを軽減するために設計された修正プロンプトを用いることにより、標的脱バイアス技術の有効性をさらに評価する。
本研究は,言語モデルがテキストおよび画像生成タスクに大きなバイアスを呈し続けていることを示し,グローバルな受容性を実現するために,より公平な言語モデルを開発する必要があることを強調した。
関連論文リスト
- Spoken Stereoset: On Evaluating Social Bias Toward Speaker in Speech Large Language Models [50.40276881893513]
本研究では,音声大言語モデル(SLLM)における社会的バイアスの評価を目的としたデータセットであるSpken Stereosetを紹介する。
多様な人口集団の発話に対して異なるモデルがどのように反応するかを調べることで、これらのバイアスを特定することを目指している。
これらの結果から,ほとんどのモデルではバイアスが最小であるが,ステレオタイプや反ステレオタイプ傾向がわずかにみられた。
論文 参考訳(メタデータ) (2024-08-14T16:55:06Z) - Multilingual Text-to-Image Generation Magnifies Gender Stereotypes and Prompt Engineering May Not Help You [64.74707085021858]
多言語モデルは、モノリンガルモデルと同様に、有意な性別バイアスに悩まされていることを示す。
多言語モデルにおけるジェンダーバイアスの研究を促進するための新しいベンチマークMAGBIGを提案する。
以上の結果から,モデルが強い性バイアスを示すだけでなく,言語によって異なる行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-01-29T12:02:28Z) - Exploring Social Bias in Downstream Applications of Text-to-Image
Foundation Models [72.06006736916821]
合成画像を用いて、社会的バイアスに対するテキスト・画像モデル、画像編集と分類の2つの応用を探索する。
提案手法を用いて,最先端のオープンソーステキスト・ツー・イメージ・モデルであるtextitStable Diffusion における有意義かつ有意義なセクション間社会的バイアスを明らかにする。
本研究は、下流業務・サービスにおけるテキスト・ツー・イメージ基盤モデルの導入について、未発表の点に注意を払っている。
論文 参考訳(メタデータ) (2023-12-05T14:36:49Z) - Exposing Bias in Online Communities through Large-Scale Language Models [3.04585143845864]
この研究は、言語モデルにおけるバイアスの欠陥を使用して、6つの異なるオンラインコミュニティのバイアスを調査します。
得られたモデルのバイアスは、異なる人口層を持つモデルに促し、これらの世代における感情と毒性の値を比較することで評価される。
この作業は、トレーニングデータからバイアスがどの程度容易に吸収されるかを確認するだけでなく、さまざまなデータセットやコミュニティのバイアスを特定し比較するためのスケーラブルな方法も提示する。
論文 参考訳(メタデータ) (2023-06-04T08:09:26Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z) - An Analysis of Social Biases Present in BERT Variants Across Multiple
Languages [0.0]
多様な言語からなる単言語BERTモデルにおけるバイアスについて検討する。
文の擬似類似度に基づいて,任意のバイアスを測定するテンプレートベースの手法を提案する。
偏見探索の現在の手法は言語に依存していると結論付けている。
論文 参考訳(メタデータ) (2022-11-25T23:38:08Z) - Bias at a Second Glance: A Deep Dive into Bias for German Educational
Peer-Review Data Modeling [10.080007569933331]
我々は5年間で9,165人のドイツのピアレビューのコーパスで、テキストと複数のアーキテクチャ間のバイアスを分析します。
収集したコーパスは, 共起解析やGloVe埋め込みにおいて多くのバイアスを示さない。
事前訓練されたドイツの言語モデルは、実質的な概念的、人種的、性別的偏見を見出す。
論文 参考訳(メタデータ) (2022-09-21T13:08:16Z) - Challenges in Measuring Bias via Open-Ended Language Generation [1.5552869983952944]
我々は、プロンプトセット、メトリクス、自動ツール、サンプリング戦略の特定の選択がバイアス結果にどのように影響するかを分析する。
オープンな言語生成におけるバイアスを報告するためのレコメンデーションを提供する。
論文 参考訳(メタデータ) (2022-05-23T19:57:15Z) - Worst of Both Worlds: Biases Compound in Pre-trained Vision-and-Language
Models [17.90351661475405]
この研究は、テキストベースのバイアス分析手法を拡張し、マルチモーダル言語モデルを調べる。
VL-BERTが性別バイアスを示し、視覚シーンを忠実に表現するよりもステレオタイプを強化することを好むことが多いことを実証します。
論文 参考訳(メタデータ) (2021-04-18T00:02:32Z) - Probing Contextual Language Models for Common Ground with Visual
Representations [76.05769268286038]
我々は、マッチングと非マッチングの視覚表現を区別する上で、テキストのみの表現がいかに効果的かを評価するための探索モデルを設計する。
以上の結果から,言語表現だけでは,適切な対象カテゴリから画像パッチを検索する強力な信号が得られることがわかった。
視覚的に接地された言語モデルは、例えば検索においてテキストのみの言語モデルよりわずかに優れているが、人間よりもはるかに低い。
論文 参考訳(メタデータ) (2020-05-01T21:28:28Z) - Towards Controllable Biases in Language Generation [87.89632038677912]
本研究では、特定の人口集団の言及を含む入力プロンプトによって生成されたテキストの社会的バイアスを誘導する手法を開発した。
1 つの人口統計学において負のバイアスを誘発し、もう1 つの人口統計学において正のバイアスを誘導し、2 つのシナリオを分析する。
論文 参考訳(メタデータ) (2020-05-01T08:25:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。