論文の概要: Multimodal Fake News Video Explanation: Dataset, Analysis and Evaluation
- arxiv url: http://arxiv.org/abs/2501.08514v3
- Date: Thu, 17 Apr 2025 15:16:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-19 00:41:30.553019
- Title: Multimodal Fake News Video Explanation: Dataset, Analysis and Evaluation
- Title(参考訳): マルチモーダルフェイクニュース映像の解説:データセット,分析,評価
- Authors: Lizhi Chen, Zhong Qian, Peifeng Li, Qiaoming Zhu,
- Abstract要約: 我々は、2,672件のフェイクニュースビデオ投稿の新しいデータセットを開発し、現実のフェイクニュースビデオの4つの側面を確実に説明できる。
さらに,FakeVEをベンチマークするマルチモーダル変換器(Multimodal Relation Graph Transformer:MRGT)を提案する。
- 参考スコア(独自算出の注目度): 13.779579002878918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal fake news videos are difficult to interpret because they require comprehensive consideration of the correlation and consistency between multiple modes. Existing methods deal with fake news videos as a classification problem, but it's not clear why news videos are identified as fake. Without proper explanation, the end user may not understand the underlying meaning of the falsehood. Therefore, we propose a new problem - Fake news video Explanation (FNVE) - given a multimodal news post containing a video and title, our goal is to generate natural language explanations to reveal the falsity of the news video. To that end, we developed FakeVE, a new dataset of 2,672 fake news video posts that can definitively explain four real-life fake news video aspects. In order to understand the characteristics of fake news video explanation, we conducted an exploratory analysis of FakeVE from different perspectives. In addition, we propose a Multimodal Relation Graph Transformer (MRGT) based on the architecture of multimodal Transformer to benchmark FakeVE. The empirical results show that the results of the various benchmarks (adopted by FakeVE) are convincing and provide a detailed analysis of the differences in explanation generation of the benchmark models.
- Abstract(参考訳): マルチモーダルなフェイクニュースビデオは、複数のモード間の相関と一貫性を包括的に考慮する必要があるため、解釈が難しい。
既存の手法では、フェイクニュースビデオが分類問題として扱われていますが、なぜニュースビデオがフェイクであると特定されるのかは定かではありません。
適切な説明がなければ、エンドユーザーは偽造の根底にある意味を理解できないかもしれない。
そこで本稿では,Fake News Video Explanation (FNVE) という,ビデオとタイトルを含むマルチモーダルなニュース投稿を前提として,ニュースビデオの虚偽性を明らかにするために,自然言語による説明を生成することを目的とする。
その目的のために、我々はFakeVEを開発した。FakeVEは、2,672件のフェイクニュースビデオ投稿からなる新しいデータセットで、現実のフェイクニュースビデオ4つの側面を確実に説明できる。
フェイクニュースビデオの説明の特徴を理解するため,異なる視点からFakeVEの探索分析を行った。
さらに,FakeVEをベンチマークするマルチモーダル変換器(Multimodal Relation Graph Transformer:MRGT)を提案する。
実験結果から, 各種ベンチマーク(FakeVEによる)の結果は説得力があり, ベンチマークモデルの説明生成の違いを詳細に分析した。
関連論文リスト
- Each Fake News is Fake in its Own Way: An Attribution Multi-Granularity Benchmark for Multimodal Fake News Detection [18.466087573842405]
ソーシャルプラットフォームは偽ニュースの多さで飽和し、ネガティブな結果をもたらしている。
既存のマルチモーダルフェイクニュースデータセットは、実または偽のバイナリラベルのみを提供する。
そこで,本研究では,マルチグラニュラリティ・マルチモーダル・フェイクニュース検出データセットamgを構築し,固有のフェイク・パターンを明らかにした。
論文 参考訳(メタデータ) (2024-12-19T09:40:17Z) - VMID: A Multimodal Fusion LLM Framework for Detecting and Identifying Misinformation of Short Videos [14.551693267228345]
本稿では,マルチモーダル情報に基づく新しいフェイクニュース検出手法を提案する。
提案フレームワークは,ビデオにマルチモーダル機能を組み込むことで,偽ニュース検出の精度と信頼性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-11-15T08:20:26Z) - MMCFND: Multimodal Multilingual Caption-aware Fake News Detection for Low-resource Indic Languages [0.4062349563818079]
Indic Fake News Detection (MMIFND) のためのマルチモーダル多言語データセットを提案する。
この厳密にキュレートされたデータセットは、ヒンディー語、ベンガル語、マラタイ語、マラヤラム語、タミル語、グジャラート語、パンジャービ語にまたがる28,085のインスタンスで構成されている。
フェイクニュース検出(MMCFND)のためのマルチモーダルキャプション対応フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-14T11:59:33Z) - FakingRecipe: Detecting Fake News on Short Video Platforms from the Perspective of Creative Process [19.629705422258905]
フェイクニュースの作り方を考える新しい視点を導入する。
ニュースビデオ制作の背後にある創造的なプロセスのレンズを通して、我々の経験的分析はフェイクニュースビデオの特徴を明らかにする。
得られた知見に基づいて、フェイクニュースショートビデオを検出するクリエイティブなプロセス認識モデルであるFakingRecipeを設計する。
論文 参考訳(メタデータ) (2024-07-23T17:39:49Z) - FineFake: A Knowledge-Enriched Dataset for Fine-Grained Multi-Domain Fake News Detection [54.37159298632628]
FineFakeは、フェイクニュース検出のためのマルチドメイン知識強化ベンチマークである。
FineFakeは6つのセマンティックトピックと8つのプラットフォームにまたがる16,909のデータサンプルを含んでいる。
FineFakeプロジェクト全体がオープンソースリポジトリとして公開されている。
論文 参考訳(メタデータ) (2024-03-30T14:39:09Z) - Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
我々は,機械による(言い換えられた)リアルニュース,機械生成のフェイクニュース,人書きのフェイクニュース,人書きのリアルニュースの相互作用について検討する。
我々の実験では、人書き記事のみに特化して訓練された検知器が、機械が生成したフェイクニュースを検出できる興味深いパターンを明らかにしましたが、その逆ではありません。
論文 参考訳(メタデータ) (2023-11-02T08:39:45Z) - Multi-modal Fake News Detection on Social Media via Multi-grained
Information Fusion [21.042970740577648]
偽ニュース検出のためのMMFN(Multi-fine Multi-modal Fusion Network)を提案する。
そこで我々は,トランスフォーマーを用いた事前学習モデルを用いて,テキストと画像からトークンレベルの特徴を符号化する。
マルチモーダルモジュールは、CLIPエンコーダでエンコードされた粗い機能を考慮して、きめ細かい機能をフューズする。
論文 参考訳(メタデータ) (2023-04-03T09:13:59Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverseは、偽ニュースの検出に使用できる多言語エビデンスに基づく新機能である。
偽ニュース検出機能としての言語間証拠の使用仮説を確認した。
論文 参考訳(メタデータ) (2022-11-25T18:24:17Z) - A Coarse-to-fine Cascaded Evidence-Distillation Neural Network for
Explainable Fake News Detection [15.517424861844317]
既存のフェイクニュース検出手法は、ニュースの一部を真または偽と分類し、説明を提供することを目的としており、優れたパフォーマンスを達成している。
あるニュースが事実確認され、あるいは公表されていない場合、関連する生のレポートは、通常、様々なメディアに散発的に配信される。
そこで本稿では, 偽ニュース検出のためのニューラルネットワークCofCED(Coarse-to-fine Cascaded Evidence-Distillation)を提案する。
論文 参考訳(メタデータ) (2022-09-29T09:05:47Z) - Towards Fast Adaptation of Pretrained Contrastive Models for
Multi-channel Video-Language Retrieval [70.30052749168013]
マルチチャンネルビデオ言語検索は、異なるチャンネルからの情報を理解するためにモデルを必要とする。
対照的なマルチモーダルモデルは、画像やビデオやテキストのエンティティの整合に非常に効果的であることが示されている。
これら2つの行を、限られたデータとリソースを持つマルチチャンネルビデオ言語検索に迅速に適応する方法は、明らかではない。
論文 参考訳(メタデータ) (2022-06-05T01:43:52Z) - A Multi-Policy Framework for Deep Learning-Based Fake News Detection [0.31498833540989407]
フェイクニュース検出を自動化するフレームワークであるMPSC(Multi-Policy Statement Checker)を導入する。
MPSCは、深層学習技術を用いて、文自体とその関連するニュース記事を分析し、それが信頼できるか疑わしいかを予測する。
論文 参考訳(メタデータ) (2022-06-01T21:25:21Z) - A Closer Look at Debiased Temporal Sentence Grounding in Videos:
Dataset, Metric, and Approach [53.727460222955266]
テンポラル・センテンス・グラウンディング・イン・ビデオ(TSGV)は、未編集のビデオに自然言語文を埋め込むことを目的としている。
最近の研究では、現在のベンチマークデータセットには明らかなモーメントアノテーションバイアスがあることが判明している。
偏りのあるデータセットによる膨らませ評価を緩和するため、基礎的リコールスコアを割引する新しい評価基準「dR@n,IoU@m」を導入する。
論文 参考訳(メタデータ) (2022-03-10T08:58:18Z) - See, Hear, Read: Leveraging Multimodality with Guided Attention for
Abstractive Text Summarization [14.881597737762316]
我々は,NDSS,ICML,NeurIPSなどの著名な学術カンファレンスのプレゼンテーションから収集した,様々な期間のビデオを用いた抽象テキスト要約のための最初の大規模データセットを紹介する。
次に,多モード変換器をベースとしたデコーダのみの言語モデルであるnameを提案し,テキスト要約タスクの様々な入力モードにおけるモーダル内およびモーダル間ダイナミクスを本質的にキャプチャする。
論文 参考訳(メタデータ) (2021-05-20T08:56:33Z) - Explainable Tsetlin Machine framework for fake news detection with
credibility score assessment [16.457778420360537]
本稿では,最近導入されたTsetlin Machine (TM) に基づく,新たな解釈可能な偽ニュース検出フレームワークを提案する。
我々は、TMの接続節を用いて、真偽のニューステキストの語彙的および意味的特性をキャプチャする。
評価のために、PolitiFactとGossipCopという2つの公開データセットで実験を行い、TMフレームワークが以前公開されたベースラインを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2021-05-19T13:18:02Z) - A First Look: Towards Explainable TextVQA Models via Visual and Textual
Explanations [3.7638008383533856]
MTXNetは、エンドツーエンドのトレーニング可能なマルチモーダルアーキテクチャで、マルチモーダルな説明を生成する。
マルチモーダルな説明によるトレーニングは、CIDErスコアで最大7%、IoUでは2%を超えることが示されています。
また,生成したマルチモーダル説明を利用した実世界の電子商取引アプリケーションについても述べる。
論文 参考訳(メタデータ) (2021-04-29T00:36:17Z) - User Preference-aware Fake News Detection [61.86175081368782]
既存の偽ニュース検出アルゴリズムは、詐欺信号のニュースコンテンツをマイニングすることに焦点を当てている。
本稿では,共同コンテンツとグラフモデリングにより,ユーザの好みから様々な信号を同時にキャプチャする新しいフレームワークUPFDを提案する。
論文 参考訳(メタデータ) (2021-04-25T21:19:24Z) - How does Truth Evolve into Fake News? An Empirical Study of Fake News
Evolution [55.27685924751459]
偽ニュース進化過程を追跡する新しいデータセットであるフェイクニュース進化データセットを提示する。
私たちのデータセットは950のペアデータで構成され、それぞれが真実、偽ニュース、進化した偽ニュースを表す記事で構成されています。
進化中の特徴を観察し,誤情報技術,テキスト類似性,キーワードトップ10,分類精度,発話部分,感情特性について検討した。
論文 参考訳(メタデータ) (2021-03-10T09:01:34Z) - VMSMO: Learning to Generate Multimodal Summary for Video-based News
Articles [63.32111010686954]
マルチモーダル出力(VMSMO)を用いたビデオベースマルチモーダル要約の課題を提案する。
このタスクの主な課題は、ビデオの時間的依存性と記事の意味を共同でモデル化することである。
本稿では,デュアルインタラクションモジュールとマルチモーダルジェネレータからなるDual-Interaction-based Multimodal Summarizer (DIMS)を提案する。
論文 参考訳(メタデータ) (2020-10-12T02:19:16Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z) - Multi-modal Transformer for Video Retrieval [67.86763073161012]
ビデオの様々なモードを共同で符号化するマルチモーダルトランスを提案する。
自然言語に関しては,マルチモーダル変換器と組み合わさった言語を最適化するベストプラクティスについて検討する。
この新たなフレームワークにより,3つのデータセット上での映像検索の最先端化が可能となる。
論文 参考訳(メタデータ) (2020-07-21T07:38:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。