論文の概要: TimeFlow: Longitudinal Brain Image Registration and Aging Progression Analysis
- arxiv url: http://arxiv.org/abs/2501.08667v1
- Date: Wed, 15 Jan 2025 09:02:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:51:47.627788
- Title: TimeFlow: Longitudinal Brain Image Registration and Aging Progression Analysis
- Title(参考訳): TimeFlow: 経時的脳画像登録と加齢進行分析
- Authors: Bailiang Jian, Jiazhen Pan, Yitong Li, Fabian Bongratz, Ruochen Li, Daniel Rueckert, Benedikt Wiestler, Christian Wachinger,
- Abstract要約: TimeFlowは経時的脳MRI登録のための新しいフレームワークである。
明示的な滑らかさ正規化子と高密度なシーケンシャルデータに依存する従来の方法とは異なり、TimeFlowはこれらの制約なしに時間的一貫性と連続性を達成する。
TimeFlowは、新しい生物学的脳老化解析をサポートし、神経変性状態と健康な老化を効果的に区別する。
- 参考スコア(独自算出の注目度): 15.689775369812937
- License:
- Abstract: Predicting future brain states is crucial for understanding healthy aging and neurodegenerative diseases. Longitudinal brain MRI registration, a cornerstone for such analyses, has long been limited by its inability to forecast future developments, reliance on extensive, dense longitudinal data, and the need to balance registration accuracy with temporal smoothness. In this work, we present \emph{TimeFlow}, a novel framework for longitudinal brain MRI registration that overcomes all these challenges. Leveraging a U-Net architecture with temporal conditioning inspired by diffusion models, TimeFlow enables accurate longitudinal registration and facilitates prospective analyses through future image prediction. Unlike traditional methods that depend on explicit smoothness regularizers and dense sequential data, TimeFlow achieves temporal consistency and continuity without these constraints. Experimental results highlight its superior performance in both future timepoint prediction and registration accuracy compared to state-of-the-art methods. Additionally, TimeFlow supports novel biological brain aging analyses, effectively differentiating neurodegenerative conditions from healthy aging. It eliminates the need for segmentation, thereby avoiding the challenges of non-trivial annotation and inconsistent segmentation errors. TimeFlow paves the way for accurate, data-efficient, and annotation-free prospective analyses of brain aging and chronic diseases.
- Abstract(参考訳): 将来の脳状態を予測することは、健康な老化と神経変性疾患を理解するために重要である。
このような分析の基盤である経時的脳MRIの登録は、将来の発展を予測できないこと、広範囲で密度の高い経時的データに依存すること、登録精度と時間的滑らかさのバランスを取る必要性により、長い間制限されてきた。
本稿では,これらの課題を克服した縦型脳MRI登録のための新しいフレームワークである \emph{TimeFlow} を紹介する。
拡散モデルにインスパイアされた時間条件付きU-Netアーキテクチャを活用することで、TimeFlowは正確な縦方向の登録を可能にし、将来の画像予測を通じて予測分析を容易にする。
明示的な滑らかさ正規化子と高密度なシーケンシャルデータに依存する従来の方法とは異なり、TimeFlowはこれらの制約なしに時間的一貫性と連続性を達成する。
実験結果から,将来の時刻予測と登録精度の両面で,最先端の手法と比較して優れた性能を示した。
さらに、TimeFlowは、新しい生物学的脳老化解析をサポートし、神経変性状態と健康な老化を効果的に区別する。
セグメンテーションの必要性を排除し、非自明なアノテーションや一貫性のないセグメンテーションエラーの課題を避ける。
TimeFlowは、脳の老化や慢性疾患の正確、データ効率、注釈なしの予測分析の道を開く。
関連論文リスト
- ImageFlowNet: Forecasting Multiscale Image-Level Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images [44.107186498384024]
ImageFlowNetは、空間的詳細を保存しながら、初期画像から疾患軌跡を予測するために設計された新しいモデルである。
我々は、ODEの定式化を支援し、高レベルの視覚的特徴を含む正規化を動機付ける理論的洞察を提供する。
私たちのコントリビューションには、ImageFlowNetの開発、実世界のデータセットに関する理論的および実証的な検証が含まれています。
論文 参考訳(メタデータ) (2024-06-20T23:51:32Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning [91.29876772547348]
スパイキングニューラルネットワーク(SNN)は、生物学的にインスパイアされたニューラルネットワークモデルとして研究されている。
本稿では,SNNがシナプス遅延と時間符号化とを併用すると,グラフ推論の実行(知識)に長けていることを明らかにする。
論文 参考訳(メタデータ) (2024-05-27T05:53:30Z) - The Disappearance of Timestep Embedding in Modern Time-Dependent Neural Networks [11.507779310946853]
本稿では、時間依存ニューラルネットワークの時間認識を無効にする時間ステップ埋め込みの脆弱性を報告する。
我々の分析は、この現象の詳細な説明と、根本原因に対処するいくつかの解決策を提供する。
論文 参考訳(メタデータ) (2024-05-23T02:58:23Z) - A Temporally Disentangled Contrastive Diffusion Model for Spatiotemporal Imputation [35.46631415365955]
C$2$TSDという条件拡散フレームワークを導入する。
実世界の3つのデータセットに対する我々の実験は、最先端のベースラインと比較して、我々のアプローチの優れた性能を示している。
論文 参考訳(メタデータ) (2024-02-18T11:59:04Z) - TC-LIF: A Two-Compartment Spiking Neuron Model for Long-Term Sequential
Modelling [54.97005925277638]
潜在的な可能性や危険に関連する感覚的手がかりの同定は、長期間の遅延によって有用な手がかりを分離する無関係な事象によってしばしば複雑になる。
SNN(State-of-the-art spiking Neural Network)は、遠方のキュー間の長期的な時間的依存関係を確立する上で、依然として困難な課題である。
そこで本研究では,T-LIFとよばれる,生物学的にインスパイアされたTwo-compartment Leaky Integrate- and-Fireのスパイキングニューロンモデルを提案する。
論文 参考訳(メタデータ) (2023-08-25T08:54:41Z) - Long Short-term Memory with Two-Compartment Spiking Neuron [64.02161577259426]
LSTM-LIFとよばれる,生物学的にインスパイアされたLong Short-Term Memory Leaky Integrate-and-Fireのスパイキングニューロンモデルを提案する。
実験結果は,時間的分類タスクの多種多様な範囲において,優れた時間的分類能力,迅速な訓練収束,ネットワークの一般化性,LSTM-LIFモデルの高エネルギー化を実証した。
したがって、この研究は、新しいニューロモルフィック・コンピューティング・マシンにおいて、困難な時間的処理タスクを解決するための、無数の機会を開放する。
論文 参考訳(メタデータ) (2023-07-14T08:51:03Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Temporally Adjustable Longitudinal Fluid-Attenuated Inversion Recovery
MRI Estimation / Synthesis for Multiple Sclerosis [0.0]
多発性硬化症(Multiple Sclerosis、MS)は、慢性進行性神経疾患である。
脳MRI(FLAIR brain magnetic resonance imaging)は、他のMRI法と比較して、MS病変のより優れた可視化と特徴を提供する。
MSの縦断脳FLAIR MRIは、経時的に患者を反復的に画像化することで、臨床医が疾患の進行をモニタリングするための有用な情報を提供する。
様々な時間ラグを伴う将来の脳MRI検査の予測は、健康な老化やアルツハイマー病の構造的変性など、限られた用途でのみ試みられている。
論文 参考訳(メタデータ) (2022-09-09T12:42:00Z) - DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data [68.29870617697532]
時系列データにおける時間変化の相違に対するDeep Recurrent Inverse TreatmEnt重み付け(DeepRite)を提案する。
DeepRiteは、合成データから基底的真理を復元し、実際のデータから偏りのない処理効果を推定する。
論文 参考訳(メタデータ) (2020-10-28T15:05:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。