Revisiting the properties of superfluid and normal liquid ${}^4$He using ab initio potentials
- URL: http://arxiv.org/abs/2501.08730v1
- Date: Wed, 15 Jan 2025 11:14:10 GMT
- Title: Revisiting the properties of superfluid and normal liquid ${}^4$He using ab initio potentials
- Authors: Tommaso Morresi, Giovanni Garberoglio,
- Abstract summary: We find that the three-body and four-body potentials contribute to the total energy by approximately 4% and 0.4%, respectively.
In addition to the energy per particle, we analyze other key observables, including the superfluid fraction, condensed fraction, and pair distribution function.
- Score: 0.0
- License:
- Abstract: We investigate the properties of liquid ${}^4$He in both the normal and superfluid phases using path integral Monte Carlo simulations and recently developed ab initio potentials that incorporate pair, three-body, and four-body interactions. By focusing on the energy per particle as a representative observable, we use a perturbative approach to quantify the individual contributions of the many-body potentials and systematically propagate their associated uncertainties. Our findings indicate that the three-body and four-body potentials contribute to the total energy by approximately 4% and 0.4%, respectively. However, the primary limitation in achieving highly accurate first-principles calculations arises from the uncertainty in the four-body potential, which currently dominates the propagated uncertainty. In addition to the energy per particle, we analyze other key observables, including the superfluid fraction, condensed fraction, and pair distribution function, all of which demonstrate excellent agreement with experimental measurements.
Related papers
- Diffusive Decay of Collective Quantum Excitations in Electron Gas [0.0]
Generalized relations for the probability current and energy density distributions is obtained.
Plasmon levels of quasipaticle in a square-well potential are unstable decaying into equilibrium state.
The pronounced energy density valley close to half-space boundary at low level excitations predicts attractive force close to the surface.
arXiv Detail & Related papers (2024-03-02T05:32:28Z) - Cooper quartets in interacting hybrid superconducting systems [44.99833362998488]
Cooper quartets represent exotic fermion aggregates describing strongly correlated matter.
We show how to design Cooper quartets in a double-dot system coupled to ordinary superconducting leads.
arXiv Detail & Related papers (2024-01-08T19:28:15Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - The kinetic Hamiltonian with position-dependent mass [0.0]
We examine in a systematic way the most relevant orderings of pure kinetic Hamiltonians for five different position-dependent mass profiles.
As a result of the non-commutativity between momentum and position operators, a diversity of effective potentials is generated.
We obtain analytically the full-spectrum of energies and solutions in the twenty-five cases considered.
arXiv Detail & Related papers (2023-03-04T21:23:42Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Interacting bosons in a triple well: Preface of many-body quantum chaos [0.0]
We investigate the onset of quantum chaos in a triple-well model that moves away from integrability as its potential gets tilted.
Even in its deepest chaotic regime, the system presents features reminiscent of integrability.
arXiv Detail & Related papers (2021-11-26T19:00:03Z) - Mechanism for particle fractionalization and universal edge physics in
quantum Hall fluids [58.720142291102135]
We advance a second-quantization framework that helps reveal an exact fusion mechanism for particle fractionalization in FQH fluids.
We also uncover the fundamental structure behind the condensation of non-local operators characterizing topological order in the lowest-Landau-level (LLL)
arXiv Detail & Related papers (2021-10-12T18:00:00Z) - Quantum liquids and droplets with low-energy interactions in one
dimension [0.20646127669654826]
We study the role of effective three-body repulsion, in systems with weak attractive pairwise interactions.
At zero temperature, the equations of state in both theories agree quantitatively at low densities for overall repulsion.
We develop analytical tools to investigate the properties of the theory, and obtain astounding agreement with exact numerical calculations.
arXiv Detail & Related papers (2021-03-30T16:56:01Z) - Characterizing four-body indistinguishability via symmetries [68.8204255655161]
We show how to characterize up to four identical bosonic or fermionic particles, which are rendered partially distinguishable through their internal degrees of freedom prepared in mixed states.
For pure internal states, we further extract information on the particles' collective phases, which ultimately allows for an experimental reconstruction of the full many-particle density operator up to complex conjugation.
arXiv Detail & Related papers (2021-03-08T08:38:32Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.