Deep Learning Meets Queue-Reactive: A Framework for Realistic Limit Order Book Simulation
- URL: http://arxiv.org/abs/2501.08822v1
- Date: Wed, 15 Jan 2025 14:19:20 GMT
- Title: Deep Learning Meets Queue-Reactive: A Framework for Realistic Limit Order Book Simulation
- Authors: Hamza Bodor, Laurent Carlier,
- Abstract summary: We present the Multidimensional Deep Queue-Reactive model (MDQR)
The model relaxes the assumption of queue independence, enriches the state space with market features, and models the distribution of order sizes.
Using data from the Bund futures market, we show that MDQR captures key market properties including the square-root law of market impact, cross-queue correlations, and realistic order size patterns.
- Score: 0.0
- License:
- Abstract: The Queue-Reactive model introduced by Huang et al. (2015) has become a standard tool for limit order book modeling, widely adopted by both researchers and practitioners for its simplicity and effectiveness. We present the Multidimensional Deep Queue-Reactive (MDQR) model, which extends this framework in three ways: it relaxes the assumption of queue independence, enriches the state space with market features, and models the distribution of order sizes. Through a neural network architecture, the model learns complex dependencies between different price levels and adapts to varying market conditions, while preserving the interpretable point-process foundation of the original framework. Using data from the Bund futures market, we show that MDQR captures key market properties including the square-root law of market impact, cross-queue correlations, and realistic order size patterns. The model demonstrates particular strength in reproducing both conditional and stationary distributions of order sizes, as well as various stylized facts of market microstructure. The model achieves this while maintaining the computational efficiency needed for practical applications such as strategy development through reinforcement learning or realistic backtesting.
Related papers
- STORM: A Spatio-Temporal Factor Model Based on Dual Vector Quantized Variational Autoencoders for Financial Trading [55.02735046724146]
In financial trading, factor models are widely used to price assets and capture excess returns from mispricing.
We propose a Spatio-Temporal factOR Model based on dual vector quantized variational autoencoders, named STORM.
Storm extracts features of stocks from temporal and spatial perspectives, then fuses and aligns these features at the fine-grained and semantic level, and represents the factors as multi-dimensional embeddings.
arXiv Detail & Related papers (2024-12-12T17:15:49Z) - A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
We propose a novel framework, Collaborative Ensemble Training Network (CETNet), to leverage multiple distinct models.
Unlike naive model scaling, our approach emphasizes diversity and collaboration through collaborative learning.
We validate our framework on three public datasets and a large-scale industrial dataset from Meta.
arXiv Detail & Related papers (2024-11-20T20:38:56Z) - DIAR: Diffusion-model-guided Implicit Q-learning with Adaptive Revaluation [10.645244994430483]
We propose a novel offline reinforcement learning (offline RL) approach, introducing the Diffusion-model-guided Implicit Q-learning with Adaptive Revaluation framework.
We leverage diffusion models to learn state-action sequence distributions and incorporate value functions for more balanced and adaptive decision-making.
As demonstrated in tasks like Maze2D, AntMaze, and Kitchen, DIAR consistently outperforms state-of-the-art algorithms in long-horizon, sparse-reward environments.
arXiv Detail & Related papers (2024-10-15T07:09:56Z) - Quantile Regression for Distributional Reward Models in RLHF [1.8130068086063336]
We introduce Quantile Reward Models (QRMs), a novel approach to reward modeling that learns a distribution over rewards instead of a single scalar value.
Our method uses quantile regression to estimate a full, potentially multimodal distribution over preferences, providing a more powerful and nuanced representation of preferences.
Our experimental results show that QRM outperforms comparable traditional point-estimate models on RewardBench.
arXiv Detail & Related papers (2024-09-16T10:54:04Z) - DogeRM: Equipping Reward Models with Domain Knowledge through Model Merging [65.41765072566287]
We propose textbfDomain knowledtextbfge merged textbfReward textbfModel (DogeRM), a novel framework that integrates domain-specific knowledge into a general reward model by model merging.
arXiv Detail & Related papers (2024-07-01T17:01:54Z) - Jointly Training and Pruning CNNs via Learnable Agent Guidance and Alignment [69.33930972652594]
We propose a novel structural pruning approach to jointly learn the weights and structurally prune architectures of CNN models.
The core element of our method is a Reinforcement Learning (RL) agent whose actions determine the pruning ratios of the CNN model's layers.
We conduct the joint training and pruning by iteratively training the model's weights and the agent's policy.
arXiv Detail & Related papers (2024-03-28T15:22:29Z) - The Bayesian Context Trees State Space Model for time series modelling
and forecasting [8.37609145576126]
A hierarchical Bayesian framework is introduced for developing rich mixture models for real-valued time series.
At the top level, meaningful discrete states are identified as appropriately quantised values of some of the most recent samples.
At the bottom level, a different, arbitrary model for real-valued time series - a base model - is associated with each state.
arXiv Detail & Related papers (2023-08-02T02:40:42Z) - Deep incremental learning models for financial temporal tabular datasets
with distribution shifts [0.9790236766474201]
The framework uses a simple basic building block (decision trees) to build self-similar models of any required complexity.
We demonstrate our scheme using XGBoost models trained on the Numerai dataset and show that a two layer deep ensemble of XGBoost models over different model snapshots delivers high quality predictions.
arXiv Detail & Related papers (2023-03-14T14:10:37Z) - Slimmable Domain Adaptation [112.19652651687402]
We introduce a simple framework, Slimmable Domain Adaptation, to improve cross-domain generalization with a weight-sharing model bank.
Our framework surpasses other competing approaches by a very large margin on multiple benchmarks.
arXiv Detail & Related papers (2022-06-14T06:28:04Z) - Reinforcement Learning as One Big Sequence Modeling Problem [84.84564880157149]
Reinforcement learning (RL) is typically concerned with estimating single-step policies or single-step models.
We view RL as a sequence modeling problem, with the goal being to predict a sequence of actions that leads to a sequence of high rewards.
arXiv Detail & Related papers (2021-06-03T17:58:51Z) - Generating Realistic Stock Market Order Streams [18.86755130031027]
We propose an approach to generate realistic and high-fidelity stock market data based on generative adversarial networks (GANs)
Our Stock-GAN model employs a conditional Wasserstein GAN to capture history dependence of orders.
arXiv Detail & Related papers (2020-06-07T17:32:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.