論文の概要: Automated Retrosynthesis Planning of Macromolecules Using Large Language Models and Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2501.08897v2
- Date: Tue, 15 Apr 2025 14:40:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 21:47:51.236813
- Title: Automated Retrosynthesis Planning of Macromolecules Using Large Language Models and Knowledge Graphs
- Title(参考訳): 大規模言語モデルと知識グラフを用いたマクロ分子の自動再合成計画
- Authors: Qinyu Ma, Yuhao Zhou, Jianfeng Li,
- Abstract要約: 大規模言語モデル(LLM)と知識グラフを統合するエージェントシステムを提案する。
本システムは,関係する文献の検索,反応データの抽出,データベースクエリ,逆合成経路木の構築を完全自動化する。
この研究は、LLMを動力とするマクロ分子に特化して、完全に自動化された再合成計画薬を開発する最初の試みである。
- 参考スコア(独自算出の注目度): 11.191853171170516
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Identifying reliable synthesis pathways in materials chemistry is a complex task, particularly in polymer science, due to the intricate and often non-unique nomenclature of macromolecules. To address this challenge, we propose an agent system that integrates large language models (LLMs) and knowledge graphs. By leveraging LLMs' powerful capabilities for extracting and recognizing chemical substance names, and storing the extracted data in a structured knowledge graph, our system fully automates the retrieval of relevant literatures, extraction of reaction data, database querying, construction of retrosynthetic pathway trees, further expansion through the retrieval of additional literature and recommendation of optimal reaction pathways. By considering the complex interdependencies among chemical reactants, a novel Multi-branched Reaction Pathway Search Algorithm (MBRPS) is proposed to help identify all valid multi-branched reaction pathways, which arise when a single product decomposes into multiple reaction intermediates. In contrast, previous studies were limited to cases where a product decomposes into at most one reaction intermediate. This work represents the first attempt to develop a fully automated retrosynthesis planning agent tailored specially for macromolecules powered by LLMs. Applied to polyimide synthesis, our new approach constructs a retrosynthetic pathway tree with hundreds of pathways and recommends optimized routes, including both known and novel pathways. This demonstrates utilizing LLMs for literature consultation to accomplish specific tasks is possible and crucial for future materials research, given the vast amount of materials-related literature.
- Abstract(参考訳): 物質化学における信頼性の高い合成経路の同定は、特に高分子科学における複雑な課題である。
この課題に対処するために,大規模言語モデル(LLM)と知識グラフを統合するエージェントシステムを提案する。
化学物質名を抽出し認識し,抽出したデータを構造化知識グラフに格納するLLMの強力な能力を活用することにより,本システムは,関連する文献の検索,反応データの抽出,データベースクエリ,再合成経路木の構築,追加文献の検索によるさらなる拡張,最適反応経路の推薦を完全自動化する。
化学反応物間の複雑な相互依存性を考慮し, 1つの生成物が複数の反応中間体に分解した場合に生じる, 有効な全ての反応経路の同定を支援するために, MBRPS (Multi-branched Reaction Pathway Search Algorithm) を提案する。
対照的に、以前の研究は、生成物が少なくとも1つの反応中間体に分解される場合に限られていた。
この研究は、LLMを動力とするマクロ分子に特化して、完全に自動化された再合成計画薬を開発する最初の試みである。
ポリイミド合成に応用した新しい手法は、数百の経路を持つ逆合成経路木を構築し、既知の経路と新規経路の両方を含む最適化された経路を推奨する。
このことは、大量の資料関連文献を考えると、特定の課題を達成するためにLLMを利用することは可能であり、将来の材料研究にとって極めて重要であることを証明している。
関連論文リスト
- Interpretable Deep Learning for Polar Mechanistic Reaction Prediction [43.95903801494905]
PMechRP(Polar Mechanistic Reaction Predictor)は,PMechDBデータセット上で機械学習モデルをトレーニングするシステムである。
私たちは、トランスフォーマーベース、グラフベース、および2段階のシアムアーキテクチャを含む、さまざまな機械学習モデルの比較をトレーニングします。
私たちの最高のパフォーマンスのアプローチはハイブリッドモデルで、5アンサンブルのChemformerモデルと2ステップのSiameseフレームワークを組み合わせたものです。
論文 参考訳(メタデータ) (2025-04-22T02:31:23Z) - Automated, LLM enabled extraction of synthesis details for reticular materials from scientific literature [29.097783516208892]
LLMを用いた段落分類と情報抽出を自動化した知識抽出パイプライン(KEP)を提案する。
LLMは、微調整や訓練を必要とせず、PDF文書から化学情報を検索できることを実証する。
これらの結果は,人間のアノテーションやデータキュレーションの取り組みを減らすKEPアプローチの可能性を示している。
論文 参考訳(メタデータ) (2024-11-05T20:08:23Z) - SynthFormer: Equivariant Pharmacophore-based Generation of Molecules for Ligand-Based Drug Design [1.3927943269211591]
本稿では, サイリコ生成法とin vitroにおける実用的手法のギャップについて考察する。
医薬品の3次元同変エンコーダを用いて、完全に合成可能な分子を生成する新しいMLモデルであるSynthFormerを紹介する。
我々の貢献には、3D情報を用いた効率的な化学空間探索のための新しい方法論、分子に3D薬局表現を翻訳するSynthformerと呼ばれる新しいアーキテクチャ、医薬品発見最適化のための試薬を組織する有意義な埋め込み空間が含まれる。
論文 参考訳(メタデータ) (2024-10-03T17:38:46Z) - Leveraging Chemistry Foundation Models to Facilitate Structure Focused Retrieval Augmented Generation in Multi-Agent Workflows for Catalyst and Materials Design [0.0]
ケミカル基礎モデルは,構造に着目したセマンティックケミカル情報検索の基盤として機能することを示す。
また,OpenCLIP などのマルチモーダルモデルと化学基礎モデルの併用について述べる。
論文 参考訳(メタデータ) (2024-08-21T17:25:45Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chemは150億のパラメータを持つ大規模な言語モデルであり、再合成予測の強化に最適化されている。
我々のモデルは幅広い化学知識を捉え、反応条件の正確な予測を可能にする。
この開発により、化学者は新しい化合物を十分に扱うことができ、医薬品製造と材料科学の革新サイクルを早める可能性がある。
論文 参考訳(メタデータ) (2024-08-19T05:17:40Z) - SynthesizRR: Generating Diverse Datasets with Retrieval Augmentation [55.2480439325792]
トピック分類,感情分析,トーン検出,ユーモアの6つのデータセットの合成について検討した。
その結果,SynthesizRRは語彙や意味の多様性,人文との類似性,蒸留性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-16T12:22:41Z) - An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
本稿では,幅広い化学文献から高忠実度抽出が可能なエンドツーエンドAIエージェントフレームワークを提案する。
本フレームワークの有効性は,反応条件データの精度,リコール,F1スコアを用いて評価する。
論文 参考訳(メタデータ) (2024-02-20T13:21:46Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [55.30328162764292]
Chemist-Xは、化学合成における反応条件最適化(RCO)タスクを自動化する包括的なAIエージェントである。
このエージェントは、検索強化世代(RAG)技術とAI制御のウェットラブ実験を実行する。
我々の自動ウェットラブ実験の結果は、LLMが制御するエンドツーエンドの操作を、ロボットに人間がいない状態で行うことで達成され、Chemist-Xの自動運転実験における能力が証明された。
論文 参考訳(メタデータ) (2023-11-16T01:21:33Z) - MechRetro is a chemical-mechanism-driven graph learning framework for
interpretable retrosynthesis prediction and pathway planning [10.364476820771607]
MechRetroは、再合成予測と経路計画を解釈可能なグラフ学習フレームワークである。
化学知識を先行情報として統合することにより,新しいグラフトランスアーキテクチャを設計する。
我々はMechRetroが、大規模なベンチマークデータセットに対して大きなマージンで、レトロシンセティック予測のための最先端のアプローチよりも優れていることを実証した。
論文 参考訳(メタデータ) (2022-10-06T01:27:53Z) - FusionRetro: Molecule Representation Fusion via In-Context Learning for
Retrosynthetic Planning [58.47265392465442]
再合成計画(Retrosynthetic Planning)は、開始物質から標的分子への完全な多段階合成経路を考案することを目的としている。
現在の戦略では、単一ステップの逆合成モデルと探索アルゴリズムの分離されたアプローチを採用している。
本稿では,文脈情報を利用した新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-30T08:44:58Z) - Retroformer: Pushing the Limits of Interpretable End-to-end
Retrosynthesis Transformer [15.722719721123054]
再合成予測は有機合成の基本的な課題の1つである。
本稿では,レトロシンセシス予測のためのトランスフォーマーに基づく新しいアーキテクチャであるRetroformerを提案する。
Retroformerは、エンドツーエンドのテンプレートフリーレトロシンセシスのための新しい最先端の精度に達する。
論文 参考訳(メタデータ) (2022-01-29T02:03:55Z) - Retrosynthetic Planning with Experience-Guided Monte Carlo Tree Search [10.67810457039541]
逆合成計画では、複雑な分子を合成する膨大な数の経路が、可能性の爆発に繋がる。
現在のアプローチは、化学的知識が限られている人や機械で訓練されたスコア関数に依存している。
検索中に合成経験から知識を学ぶための体験指導ネットワークを構築した。
論文 参考訳(メタデータ) (2021-12-11T17:14:15Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
そこで我々は, テンプレートフリーな自動逆合成拡張アルゴリズムを考案した。
我々の方法はレトロシンセシスを2段階に分解する。
最先端のベースラインよりも優れている一方で、我々のモデルは化学的に合理的な解釈も提供する。
論文 参考訳(メタデータ) (2020-11-04T04:35:34Z) - Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search [83.22850633478302]
反合成計画(retrosynthetic planning)は、ターゲット生成物の合成に繋がる一連の反応を特定する。
既存の手法では、高いばらつきを持つロールアウトによる高価なリターン推定が必要か、品質よりも探索速度を最適化する必要がある。
本稿では,高品質な合成経路を効率よく見つけるニューラルネットワークA*ライクなアルゴリズムRetro*を提案する。
論文 参考訳(メタデータ) (2020-06-29T05:53:33Z) - Learning To Navigate The Synthetically Accessible Chemical Space Using
Reinforcement Learning [75.95376096628135]
ド・ノボ薬物設計のための強化学習(RL)を利用した新しい前方合成フレームワークを提案する。
このセットアップでは、エージェントは巨大な合成可能な化学空間をナビゲートする。
本研究は,合成可能な化学空間を根本的に拡張する上で,エンド・ツー・エンド・トレーニングが重要なパラダイムであることを示す。
論文 参考訳(メタデータ) (2020-04-26T21:40:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。