Multi-View Transformers for Airway-To-Lung Ratio Inference on Cardiac CT Scans: The C4R Study
- URL: http://arxiv.org/abs/2501.08902v1
- Date: Wed, 15 Jan 2025 16:11:24 GMT
- Title: Multi-View Transformers for Airway-To-Lung Ratio Inference on Cardiac CT Scans: The C4R Study
- Authors: Sneha N. Naik, Elsa D. Angelini, Eric A. Hoffman, Elizabeth C. Oelsner, R. Graham Barr, Benjamin M. Smith, Andrew F. Laine,
- Abstract summary: There is growing interest to infer ALR from cardiac CT images to investigate the relationship of ALR to severe COVID-19 and post-acute sequelae of SARS-CoV-2 infection (PASC)
In this study, we present a novel attention-based Multi-view Swin Transformer to infer FL ALR values from segmented cardiac CT scans.
- Score: 2.9690967372131305
- License:
- Abstract: The ratio of airway tree lumen to lung size (ALR), assessed at full inspiration on high resolution full-lung computed tomography (CT), is a major risk factor for chronic obstructive pulmonary disease (COPD). There is growing interest to infer ALR from cardiac CT images, which are widely available in epidemiological cohorts, to investigate the relationship of ALR to severe COVID-19 and post-acute sequelae of SARS-CoV-2 infection (PASC). Previously, cardiac scans included approximately 2/3 of the total lung volume with 5-6x greater slice thickness than high-resolution (HR) full-lung (FL) CT. In this study, we present a novel attention-based Multi-view Swin Transformer to infer FL ALR values from segmented cardiac CT scans. For the supervised training we exploit paired full-lung and cardiac CTs acquired in the Multi-Ethnic Study of Atherosclerosis (MESA). Our network significantly outperforms a proxy direct ALR inference on segmented cardiac CT scans and achieves accuracy and reproducibility comparable with a scan-rescan reproducibility of the FL ALR ground-truth.
Related papers
- Beyond the Lungs: Extending the Field of View in Chest CT with Latent Diffusion Models [15.573780808103985]
Intermediary between the human lungs and other organs, such as the liver and kidneys, is crucial for understanding the underlying risks and effects of lung diseases.
Most research chest CT imaging is focused solely on the lungs due to considerations of cost and radiation dose.
This restricted field of view poses challenges to comprehensive analysis and hinders the ability to gain insights into the impact of lung diseases on other organs.
arXiv Detail & Related papers (2025-01-22T18:28:18Z) - Take Your Steps: Hierarchically Efficient Pulmonary Disease Screening via CT Volume Compression [17.49451070903281]
We propose a hierarchical approach to reduce the computational cost of pulmonary disease screening.
First, we propose a Computed Tomography Volume Compression (CTVC) method to select a small slice that comprehensively represents the whole CT volume.
Second, the selected CT slices are used to detect pulmonary diseases subset via a lightweight classification model.
Third, an uncertainty measurement strategy is applied to identify samples with low diagnostic confidence, which are re-detected by radiologists.
arXiv Detail & Related papers (2024-12-02T14:18:17Z) - Robust deep labeling of radiological emphysema subtypes using squeeze
and excitation convolutional neural networks: The MESA Lung and SPIROMICS
Studies [34.200556207264974]
Pulmonary emphysema is the progressive, irreversible loss of lung tissue.
Recent work has led to the unsupervised learning of ten spatially-informed lung texture patterns (ss) on lung CT.
We present a robust 3-D squeeze-and-excitation model for supervised classification of ss CNNs and CTES on lung CT.
arXiv Detail & Related papers (2024-03-01T03:45:56Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Using BOLD-fMRI to Compute the Respiration Volume per Time (RTV) and
Respiration Variation (RV) with Convolutional Neural Networks (CNN) in the
Human Connectome Development Cohort [55.41644538483948]
This study proposes a one-dimensional CNN model for reconstruction of two respiratory measures, RV and RVT.
Results show that a CNN can capture informative features from resting BOLD signals and reconstruct realistic RV and RVT timeseries.
arXiv Detail & Related papers (2023-07-03T18:06:36Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Automatic Pulmonary Artery and Vein Separation Algorithm Based on
Multitask Classification Network and Topology Reconstruction in Chest CT
Images [6.7068805048290425]
We propose a novel method for automatic separation of pulmonary arteries and veins from chest CT images.
The proposed method achieves an average accuracy of 96.2% on noncontrast chest CT.
arXiv Detail & Related papers (2021-03-22T11:25:45Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Segmentation of Pulmonary Opacification in Chest CT Scans of COVID-19
Patients [3.140265238474236]
We provide open source models for the segmentation of patterns of pulmonary opacification on chest Computed Tomography (CT) scans.
We have collected 663 chest CT scans of COVID-19 patients from healthcare centers around the world.
Our best model achieves an opacity Intersection-Over-Union score of 0.76 on our test set, demonstrates successful domain adaptation, and predicts the volume of opacification within 1.7% of expert radiologists.
arXiv Detail & Related papers (2020-07-07T17:32:24Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Detecting Pancreatic Ductal Adenocarcinoma in Multi-phase CT Scans via
Alignment Ensemble [77.5625174267105]
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers among the population.
Multiple phases provide more information than single phase, but they are unaligned and inhomogeneous in texture.
We suggest an ensemble of all these alignments as a promising way to boost the performance of PDAC detection.
arXiv Detail & Related papers (2020-03-18T19:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.