論文の概要: Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography
- arxiv url: http://arxiv.org/abs/2501.08970v1
- Date: Wed, 15 Jan 2025 17:28:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:53:33.003003
- Title: Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography
- Title(参考訳): 信頼された機械学習モデルがプライベート推論をアンロック
- Authors: Ilia Shumailov, Daniel Ramage, Sarah Meiklejohn, Peter Kairouz, Florian Hartmann, Borja Balle, Eugene Bagdasarian,
- Abstract要約: 有能な機械学習モデルは信頼できるサードパーティの役割を果たすことができると我々は主張する。
このアプローチは、プライバシと計算効率のバランスを達成することを目的としている。
単純な古典的暗号問題でさえ、すでにTCMEで解決できることが示されている。
- 参考スコア(独自算出の注目度): 30.57370996703948
- License:
- Abstract: We often interact with untrusted parties. Prioritization of privacy can limit the effectiveness of these interactions, as achieving certain goals necessitates sharing private data. Traditionally, addressing this challenge has involved either seeking trusted intermediaries or constructing cryptographic protocols that restrict how much data is revealed, such as multi-party computations or zero-knowledge proofs. While significant advances have been made in scaling cryptographic approaches, they remain limited in terms of the size and complexity of applications they can be used for. In this paper, we argue that capable machine learning models can fulfill the role of a trusted third party, thus enabling secure computations for applications that were previously infeasible. In particular, we describe Trusted Capable Model Environments (TCMEs) as an alternative approach for scaling secure computation, where capable machine learning model(s) interact under input/output constraints, with explicit information flow control and explicit statelessness. This approach aims to achieve a balance between privacy and computational efficiency, enabling private inference where classical cryptographic solutions are currently infeasible. We describe a number of use cases that are enabled by TCME, and show that even some simple classic cryptographic problems can already be solved with TCME. Finally, we outline current limitations and discuss the path forward in implementing them.
- Abstract(参考訳): 私たちはしばしば信頼できない当事者と交流する。
プライバシーの優先順位付けは、特定の目標を達成するためにはプライベートデータを共有する必要があるため、これらの相互作用の有効性を制限することができる。
伝統的に、この課題に対処するためには、信頼できる仲介者を探すか、マルチパーティの計算やゼロ知識証明など、データの開示量を制限する暗号化プロトコルを構築するかが関係している。
暗号化アプローチのスケーリングには大きな進歩があるが、使用可能なアプリケーションのサイズと複雑さという点では制限されている。
本稿では,有能な機械学習モデルが信頼できるサードパーティの役割を果たすことができることを論じ,これまで実現不可能であったアプリケーションに対して,セキュアな計算を可能にする。
特に,Trusted Capable Model Environments (TCMEs) は,入力/出力制約下で,明示的な情報フロー制御と明示的なステートレス性によって,有能な機械学習モデルが相互作用する,セキュアな計算をスケールするための代替手法である,と説明する。
このアプローチは、プライバシと計算効率のバランスを達成することを目的としており、古典的な暗号ソリューションが現在実現不可能なプライベート推論を可能にする。
本稿では,TCME が実現したいくつかのユースケースについて述べるとともに,TME で解決可能な,単純な古典的暗号問題でさえも示す。
最後に、現在の制限を概説し、それらを実装するための道筋について論じます。
関連論文リスト
- Federated Learning with Quantum Computing and Fully Homomorphic Encryption: A Novel Computing Paradigm Shift in Privacy-Preserving ML [4.92218040320554]
フェデレートラーニング(Federated Learning)は、複数の学習クライアントがプライベートデータを公開せずにモデル知識を共有できるようにする、従来の方法に代わるプライバシ保護手法である。
この研究は、古典層と量子層の両方を統合するフェデレート学習ニューラルネットワークアーキテクチャに完全同型暗号化スキームを適用した。
論文 参考訳(メタデータ) (2024-09-14T01:23:26Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - Privacy-aware Berrut Approximated Coded Computing for Federated Learning [1.2084539012992408]
フェデレートラーニングスキームにおけるプライバシを保証するためのソリューションを提案する。
本提案は,Secret Sharing設定に適応したBerrut Approximated Coded Computingに基づく。
論文 参考訳(メタデータ) (2024-05-02T20:03:13Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - Libertas: Privacy-Preserving Computation for Decentralised Personal Data Stores [19.54818218429241]
セキュアなマルチパーティ計算をSolidと統合するためのモジュール設計を提案する。
私たちのアーキテクチャであるLibertasでは、基盤となるSolidの設計にプロトコルレベルの変更は必要ありません。
既存の差分プライバシー技術と組み合わせて、出力プライバシーを確保する方法を示す。
論文 参考訳(メタデータ) (2023-09-28T12:07:40Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
本稿では,DQNエージェントが,離散的かつ連続的な状態空間を持つ環境でどのように動作するかを予備的,実験的に検討する。
その結果,非決定論的暗号が存在する場合でも,エージェントは依然として小さな状態空間で学習することができるが,より複雑な環境では性能が低下することがわかった。
論文 参考訳(メタデータ) (2021-09-16T21:59:37Z) - TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic
Encryption [0.0]
モノモルフィック暗号化を用いたプライバシー保護機械学習のためのオープンソースライブラリTenSEALを紹介します。
我々は,半メガバイト以下の通信を用いて,暗号化畳み込みニューラルネットワークを1秒以内で評価可能であることを示す。
論文 参考訳(メタデータ) (2021-04-07T14:32:38Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
私たちは、強力なプライバシー制約に対処できるディープラーニングフレームワークを導入します。
協調学習、差分プライバシー、同型暗号化に基づいて、提案手法は最先端技術に進化する。
論文 参考訳(メタデータ) (2020-06-16T19:31:52Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
総生産ネットワーク(SPN)のプライバシ保護のためのフレームワークを提案する。
CryptoSPNは、中規模のSPNに対して秒の順序で高効率で正確な推論を行う。
論文 参考訳(メタデータ) (2020-02-03T14:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。