論文の概要: Adaptive Law-Based Transformation (ALT): A Lightweight Feature Representation for Time Series Classification
- arxiv url: http://arxiv.org/abs/2501.09217v1
- Date: Thu, 16 Jan 2025 00:33:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:12:02.644169
- Title: Adaptive Law-Based Transformation (ALT): A Lightweight Feature Representation for Time Series Classification
- Title(参考訳): Adaptive Law-Based Transformation (ALT): 時系列分類のための軽量特徴表現
- Authors: Marcell T. Kurbucz, Balázs Hajós, Balázs P. Halmos, Vince Á. Molnár, Antal Jakovác,
- Abstract要約: 時系列分類は、金融、医療、環境モニタリングなど、多くの分野において基本的なものである。
伝統的なTSC手法は、時系列データの本質的な複雑さと変動性に悩まされることが多い。
キーデータパターンに基づいて特徴空間を変換する適応法則変換(ALT)を導入する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Time series classification (TSC) is fundamental in numerous domains, including finance, healthcare, and environmental monitoring. However, traditional TSC methods often struggle with the inherent complexity and variability of time series data. Building on our previous work with the linear law-based transformation (LLT) - which improved classification accuracy by transforming the feature space based on key data patterns - we introduce adaptive law-based transformation (ALT). ALT enhances LLT by incorporating variable-length shifted time windows, enabling it to capture distinguishing patterns of various lengths and thereby handle complex time series more effectively. By mapping features into a linearly separable space, ALT provides a fast, robust, and transparent solution that achieves state-of-the-art performance with only a few hyperparameters.
- Abstract(参考訳): 時系列分類(TSC)は、金融、医療、環境モニタリングなど、多くの分野において基本的なものである。
しかし、伝統的なTSC手法は、時系列データの本質的な複雑さと変動性に悩まされることが多い。
鍵データパターンに基づいて特徴空間を変換することで分類精度を向上させる線形法則変換(LLT)による以前の研究に基づいて、適応法則変換(ALT)を導入する。
ALTは可変長シフトタイムウィンドウを組み込むことでLLTを強化し、様々な長さの異なるパターンをキャプチャし、複雑な時系列をより効率的に処理する。
機能を線形分離可能な空間にマッピングすることで、ALTは高速で堅牢で透明なソリューションを提供する。
関連論文リスト
- Hierarchical Multimodal LLMs with Semantic Space Alignment for Enhanced Time Series Classification [4.5939667818289385]
HiTimeは階層的なマルチモーダルモデルであり、時間的情報を大きな言語モデルにシームレスに統合する。
本研究は, 時間的特徴をLCMに組み込むことにより, 時系列解析の進歩に寄与する可能性が示唆された。
論文 参考訳(メタデータ) (2024-10-24T12:32:19Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Transformerアーキテクチャにおける自己保持機構は、時系列予測において時間順序を符号化するために位置埋め込みを必要とする。
この位置埋め込みへの依存は、トランスフォーマーの時間的シーケンスを効果的に表現する能力を制限している、と我々は主張する。
本稿では,Prepreを標準的なTransformerエンコーダと統合し,様々な実世界のデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-08-20T01:56:07Z) - Enhancing Video-Language Representations with Structural Spatio-Temporal Alignment [130.15775113897553]
フィンスタは微細な構造的時間的アライメント学習法である。
既存の13の強化されたビデオ言語モデルも一貫して改善されている。
論文 参考訳(メタデータ) (2024-06-27T15:23:36Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
時系列データは、その固有の長短の依存関係によって特徴づけられる。
本稿では,時系列タスクの普遍的畳み込みモデルとして,新しい時系列軽量ネットワーク(TSLANet)を導入する。
我々の実験では、TSLANetは分類、予測、異常検出にまたがる様々なタスクにおいて最先端のモデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-04-12T13:41:29Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
パウラ理論に基づいて,最近導入されたトランスフォーマーに基づく注目パウラ(TACTiS)の簡易な目的を提案する。
結果から,実世界の予測タスクにまたがって,このモデルのトレーニング性能が大幅に向上し,最先端のパフォーマンスが達成できることが示唆された。
論文 参考訳(メタデータ) (2023-10-02T16:45:19Z) - Diffeomorphic Transformations for Time Series Analysis: An Efficient
Approach to Nonlinear Warping [0.0]
多くの分野にわたる時間データの拡散と普遍性は、類似性、分類、クラスタリング手法への関心を喚起した。
ユークリッドのような伝統的な距離測度は、時間に依存したデータの性質のため適していない。
この論文は、パラメトリックおよび微分同相のワープ変換を用いる新しい弾性アライメント法を提案する。
論文 参考訳(メタデータ) (2023-09-25T10:51:47Z) - Client: Cross-variable Linear Integrated Enhanced Transformer for
Multivariate Long-Term Time Series Forecasting [4.004869317957185]
クライアント(Client)は,従来のトランスフォーマーベースモデルと線形モデルの両方に勝る高度なモデルである。
クライアントは、従来の線形モデルとTransformerベースのモデルとを分離した、非線形性とクロス変数の依存関係を組み込んでいる。
論文 参考訳(メタデータ) (2023-05-30T08:31:22Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - ViTs for SITS: Vision Transformers for Satellite Image Time Series [52.012084080257544]
ビジョン変換器(ViT)に基づく一般衛星画像時系列(SITS)処理のための完全アテンショナルモデルを提案する。
TSViTはSITSレコードを空間と時間で重複しないパッチに分割し、トークン化し、分解されたテンポロ空間エンコーダで処理する。
論文 参考訳(メタデータ) (2023-01-12T11:33:07Z) - Cluster-Former: Clustering-based Sparse Transformer for Long-Range
Dependency Encoding [90.77031668988661]
Cluster-Formerはクラスタリングベースの新しいスパーストランスであり、チャンクされたシーケンスにまたがって注意を向ける。
提案されたフレームワークは、Sliding-Window LayerとCluster-Former Layerの2つのユニークなタイプのTransformer Layerにピボットされている。
実験によると、Cluster-Formerはいくつかの主要なQAベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-09-13T22:09:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。