論文の概要: ARMAX identification of low rank graphical models
- arxiv url: http://arxiv.org/abs/2501.09616v1
- Date: Thu, 16 Jan 2025 15:43:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:09:40.995273
- Title: ARMAX identification of low rank graphical models
- Title(参考訳): 低階グラフィカルモデルのARMAX識別
- Authors: Wenqi Cao, Aming Li,
- Abstract要約: 大規模システムでは複雑な内部関係がしばしば存在し、このような相互接続システムは低階のプロセスによって効果的に記述できる。
既存の下級識別アプローチは、ノイズを明示的に考慮しないことが多く、弱い雑音の下でも無視できない不正確さにつながった。
- 参考スコア(独自算出の注目度): 0.6906005491572401
- License:
- Abstract: In large-scale systems, complex internal relationships are often present. Such interconnected systems can be effectively described by low rank stochastic processes. When identifying a predictive model of low rank processes from sampling data, the rank-deficient property of spectral densities is often obscured by the inevitable measurement noise in practice. However, existing low rank identification approaches often did not take noise into explicit consideration, leading to non-negligible inaccuracies even under weak noise. In this paper, we address the identification issue of low rank processes under measurement noise. We find that the noisy measurement model admits a sparse plus low rank structure in latent-variable graphical models. Specifically, we first decompose the problem into a maximum entropy covariance extension problem, and a low rank graphical estimation problem based on an autoregressive moving-average with exogenous input (ARMAX) model. To identify the ARMAX low rank graphical models, we propose an estimation approach based on maximum likelihood. The identifiability and consistency of this approach are proven under certain conditions. Simulation results confirm the reliable performance of the entire algorithm in both the parameter estimation and noisy data filtering.
- Abstract(参考訳): 大規模システムでは、複雑な内部関係がしばしば存在する。
このような相互接続系は、低階確率過程によって効果的に記述できる。
サンプリングデータから低位過程の予測モデルを特定する際、スペクトル密度の階数欠陥特性は、実際には避けられない測定ノイズによって無視されることが多い。
しかし、既存の低階識別手法はノイズを明示的に考慮しないことが多く、弱い雑音の下でも無視できない不正確さを招いた。
本稿では,測定雑音下での低位プロセスの識別問題について述べる。
雑音測定モデルでは,潜在変数のグラフィカルモデルでは,スパースと低ランク構造が認められている。
具体的には、まずこの問題を最大エントロピー共分散拡張問題と、外因性入力(ARMAX)モデルを用いた自己回帰移動平均に基づく低階グラフ推定問題に分解する。
本稿では,ARMAXの低ランクグラフィカルモデルを特定するために,最大確率に基づく推定手法を提案する。
このアプローチの識別可能性と一貫性は、ある条件下で証明される。
シミュレーションの結果,パラメータ推定とノイズデータフィルタリングの両方において,全アルゴリズムの信頼性性能を確認した。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Robust Learning under Hybrid Noise [24.36707245704713]
本稿では,データリカバリの観点からハイブリッドノイズに対処するため,新たな統合学習フレームワーク"Feature and Label Recovery"(FLR)を提案する。
論文 参考訳(メタデータ) (2024-07-04T16:13:25Z) - Max-affine regression via first-order methods [7.12511675782289]
最大アフィンモデルは信号処理と統計学の応用においてユビキタスに現れる。
最大アフィン回帰に対する勾配降下(GD)とミニバッチ勾配降下(SGD)の非漸近収束解析を行った。
論文 参考訳(メタデータ) (2023-08-15T23:46:44Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
グラフ信号解析と処理の利点を享受する統合グラフ信号サンプリングフレームワークを提案する。
キーとなる考え方は、各ユーザのアイテムのレーティングをアイテムイットグラフの頂点上の関数(信号)に変換することである。
オンライン設定では、グラフフーリエ領域における連続ランダムガウス雑音を考慮したベイズ拡張(BGS-IMC)を開発する。
論文 参考訳(メタデータ) (2023-02-08T08:17:43Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
不完全な観測データから因果発見を行うため,MissDAGと呼ばれる一般的な手法を開発した。
MissDAGは、期待-最大化の枠組みの下で観測の可視部分の期待される可能性を最大化する。
各種因果探索アルゴリズムを組み込んだMissDAGの柔軟性について,広範囲なシミュレーションと実データ実験により検証した。
論文 参考訳(メタデータ) (2022-05-27T09:59:46Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Learning based signal detection for MIMO systems with unknown noise
statistics [84.02122699723536]
本論文では,未知のノイズ統計による信号を堅牢に検出する一般化最大確率(ML)推定器を考案する。
実際には、システムノイズに関する統計的な知識はほとんどなく、場合によっては非ガウス的であり、衝動的であり、分析不可能である。
我々のフレームワークは、ノイズサンプルのみを必要とする教師なしの学習アプローチによって駆動される。
論文 参考訳(メタデータ) (2021-01-21T04:48:15Z) - Least Squares Regression with Markovian Data: Fundamental Limits and
Algorithms [69.45237691598774]
マルコフ連鎖からデータポイントが依存しサンプリングされる最小二乗線形回帰問題について検討する。
この問題を$tau_mathsfmix$という観点から、鋭い情報理論のミニマックス下限を確立する。
本稿では,経験的リプレイに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-16T04:26:50Z) - An Optimal Multistage Stochastic Gradient Method for Minimax Problems [8.615625517708324]
滑らかかつ強凸な凹凸配置におけるミニマックス最適化問題について検討する。
まず, 定常ステップサイズでグラディエントDescent Ascent (GDA) 法を解析した。
本稿では,学習速度の減衰スケジュールを多段階に設定した多段階型GDAを提案する。
論文 参考訳(メタデータ) (2020-02-13T18:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。