論文の概要: Can Large Language Models Predict the Outcome of Judicial Decisions?
- arxiv url: http://arxiv.org/abs/2501.09768v3
- Date: Fri, 28 Feb 2025 18:27:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:39:28.937222
- Title: Can Large Language Models Predict the Outcome of Judicial Decisions?
- Title(参考訳): 大規模言語モデルは司法判断の結果を予測することができるか?
- Authors: Mohamed Bayan Kmainasi, Ali Ezzat Shahroor, Amani Al-Ghraibah,
- Abstract要約: 大規模言語モデル(LLM)は自然言語処理(NLP)において例外的な機能を示す。
LLaMA-3.2-3B や LLaMA-3.1-8B を含む最先端のオープンソース LLM を様々な構成でベンチマークする。
本結果は,タスク固有のコンテキストにおいて,細調整された小型モデルが大規模モデルに匹敵する性能を実現することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large Language Models (LLMs) have shown exceptional capabilities in Natural Language Processing (NLP) across diverse domains. However, their application in specialized tasks such as Legal Judgment Prediction (LJP) for low-resource languages like Arabic remains underexplored. In this work, we address this gap by developing an Arabic LJP dataset, collected and preprocessed from Saudi commercial court judgments. We benchmark state-of-the-art open-source LLMs, including LLaMA-3.2-3B and LLaMA-3.1-8B, under varying configurations such as zero-shot, one-shot, and fine-tuning using LoRA. Additionally, we employed a comprehensive evaluation framework that integrates both quantitative metrics (such as BLEU, ROUGE, and BERT) and qualitative assessments (including Coherence, Legal Language, Clarity, etc.) using an LLM. Our results demonstrate that fine-tuned smaller models achieve comparable performance to larger models in task-specific contexts while offering significant resource efficiency. Furthermore, we investigate the impact of fine-tuning the model on a diverse set of instructions, offering valuable insights into the development of a more human-centric and adaptable LLM. We have made the dataset, code, and models publicly available to provide a solid foundation for future research in Arabic legal NLP.
- Abstract(参考訳): 大規模言語モデル(LLM)は、さまざまなドメインにわたる自然言語処理(NLP)において、例外的な機能を示している。
しかし、アラビア語のような低リソース言語に対する法律判断予測(LJP)のような専門的なタスクへの応用はいまだ検討されていない。
本研究では,サウジアラビアの商業裁判所判決から収集・前処理したアラビア語LJPデータセットを開発することにより,このギャップに対処する。
LLaMA-3.2-3B や LLaMA-3.1-8B を含む最先端のオープンソース LLM を、ゼロショット、ワンショット、LoRA を用いた微調整などの様々な構成でベンチマークする。
さらに,LLMを用いた定量的指標(BLEU,ROUGE,BERT)と定性評価(コヒーレンス,法言語,明度など)を統合した総合的な評価フレームワークを採用した。
本結果は,タスク固有のコンテキストにおいて,より細調整された小型モデルが,より大きなモデルに匹敵する性能を実現し,資源効率を著しく向上することを示す。
さらに,モデルの微調整が多様な命令セットに与える影響について検討し,より人間中心で適応可能なLCMの開発に関する貴重な知見を提供する。
我々は、アラビア法NLPにおける将来の研究の確かな基盤を提供するために、データセット、コード、モデルを公開しました。
関連論文リスト
- Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
大規模言語モデル(LLM)は、プログラミング言語の構文、意味論、使用パターンを学ぶために、大規模で多様なデータセットに依存している。
低リソース言語では、そのようなデータの限られた可用性は、モデルを効果的に一般化する能力を損なう。
本稿では,低リソース言語におけるLLMの性能向上のためのいくつかの手法の有効性を実証研究する。
論文 参考訳(メタデータ) (2025-01-31T12:23:28Z) - Open or Closed LLM for Lesser-Resourced Languages? Lessons from Greek [2.3499129784547663]
我々は,7つのNLPタスクにおけるオープンソース(Llama-70b)とクローズドソース(GPT-4o mini)の大規模言語モデルの性能評価を行った。
第2に,事前学習における LLM による潜在的なデータ使用量を評価するツールとして,オーソリティ属性を再定義することにより,ギリシャ NLP の範囲を広げる。
第3に,STE(Summarize, Translate, Embed)法は,従来のTF-IDF法よりも長文のクラスタリングに優れる,法的NLPのケーススタディを示す。
論文 参考訳(メタデータ) (2025-01-22T12:06:16Z) - LLMic: Romanian Foundation Language Model [76.09455151754062]
ルーマニア語に特化して設計された基礎言語モデルである LLMic について述べる。
英語からルーマニア語への翻訳作業において,事前学習後の言語翻訳のための微調整 LLMic が既存の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2025-01-13T22:14:45Z) - ArabLegalEval: A Multitask Benchmark for Assessing Arabic Legal Knowledge in Large Language Models [0.0]
ArabLegalEvalは、大規模言語モデル(LLM)のアラビア語法的知識を評価するためのベンチマークデータセットである。
MMLUとLegalBenchのデータセットにインスパイアされたArabLegalEvalは、サウジアラビアの法的文書から得られた複数のタスクと、質問を合成する。
本研究の目的は、アラビア語の法的な問題を解くために必要な能力を分析し、最先端のLLMの性能をベンチマークすることである。
論文 参考訳(メタデータ) (2024-08-15T07:09:51Z) - Assessing the Performance of Chinese Open Source Large Language Models in Information Extraction Tasks [12.400599440431188]
自然言語処理(NLP)における情報抽出(IE)の役割
英語IEタスクに焦点をあてた最近の実験は、LLM(Large Language Models)が最適性能を達成する上で直面する課題に光を当てている。
論文 参考訳(メタデータ) (2024-06-04T08:00:40Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメントフレームワークを提案する。
実験結果から、さまざまな推論シナリオ、モデルファミリー、サイズにわたって、多言語のパフォーマンスを向上できることが示された。
我々は、表現空間、生成された応答とデータスケールを分析し、質問翻訳訓練がLLM内の言語アライメントをどのように強化するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
教師付きファインチューニング(SFT)、教師付きインストラクションチューニング(SIT)、インコンテキストラーニング(ICL)は、3つの代替であり、事実上の標準的アプローチである。
提案手法は,6つの高・低リソース言語,3つの異なるNLUタスク,多種多様な言語とドメインのセットアップを用いて,3つのアプローチを網羅的かつ体系的に比較する。
そこで本研究では,教師あり指導のチューニングが,性能とリソース要件の最良のトレードオフであることを示す。
論文 参考訳(メタデータ) (2024-03-04T10:48:13Z) - High-quality Data-to-Text Generation for Severely Under-Resourced
Languages with Out-of-the-box Large Language Models [5.632410663467911]
我々は、事前訓練された大規模言語モデル(LLM)が、アンダーリソース言語のパフォーマンスギャップを埋める可能性について検討する。
LLM は,低リソース言語における技術の現状を,かなりのマージンで容易に設定できることがわかった。
全ての言語について、人間の評価は最高のシステムで人間と同等のパフォーマンスを示すが、BLEUのスコアは英語に比べて崩壊する。
論文 参考訳(メタデータ) (2024-02-19T16:29:40Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
アフリカ語における言語間情報検索システムにおいて,大規模言語モデル (LLM) がリランカーとしてどのように機能するかを検討する。
私たちの実装は、英語と4つのアフリカの言語(ハウサ語、ソマリ語、スワヒリ語、ヨルバ語)を対象としています。
我々は、英語のクェリとアフリカの言葉の文節による言語横断的な格付けについて検討する。
論文 参考訳(メタデータ) (2023-12-26T18:38:54Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - Revisiting Pre-trained Language Models and their Evaluation for Arabic
Natural Language Understanding [44.048072667378115]
既存のアラビアのPLMは十分に探索されておらず、その事前訓練は大幅に改善できる。
文献にはこれらのモデルの体系的かつ再現可能な評価が欠如している。
我々のモデルは既存のアラビア PLM を著しく上回り、差別的で生成的なアラビア NLU および NLG タスクにおける新たな最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-21T22:38:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。