Topology-Driven Attribute Recovery for Attribute Missing Graph Learning in Social Internet of Things
- URL: http://arxiv.org/abs/2501.10151v1
- Date: Fri, 17 Jan 2025 12:23:42 GMT
- Title: Topology-Driven Attribute Recovery for Attribute Missing Graph Learning in Social Internet of Things
- Authors: Mengran Li, Junzhou Chen, Chenyun Yu, Guanying Jiang, Ronghui Zhang, Yanming Shen, Houbing Herbert Song,
- Abstract summary: The Social Internet of Things (SIoT) has fostered the integration of physical devices and social networks.<n>TAGs capture both topological structures and semantic attributes, enhancing the analysis of complex interactions.<n>We propose the Topology-Driven Attribute Recovery (TDAR) framework, which leverages topological data for AMG learning.
- Score: 12.837094650472048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advancement of information technology, the Social Internet of Things (SIoT) has fostered the integration of physical devices and social networks, deepening the study of complex interaction patterns. Text Attribute Graphs (TAGs) capture both topological structures and semantic attributes, enhancing the analysis of complex interactions within the SIoT. However, existing graph learning methods are typically designed for complete attributed graphs, and the common issue of missing attributes in Attribute Missing Graphs (AMGs) increases the difficulty of analysis tasks. To address this, we propose the Topology-Driven Attribute Recovery (TDAR) framework, which leverages topological data for AMG learning. TDAR introduces an improved pre-filling method for initial attribute recovery using native graph topology. Additionally, it dynamically adjusts propagation weights and incorporates homogeneity strategies within the embedding space to suit AMGs' unique topological structures, effectively reducing noise during information propagation. Extensive experiments on public datasets demonstrate that TDAR significantly outperforms state-of-the-art methods in attribute reconstruction and downstream tasks, offering a robust solution to the challenges posed by AMGs. The code is available at https://github.com/limengran98/TDAR.
Related papers
- CoATA: Effective Co-Augmentation of Topology and Attribute for Graph Neural Networks [4.284944931789759]
CoATA is a dual-channel GNN framework specifically designed for the Co-Augmentation of Topology and Attribute.<n>CoATA introduces contrastive learning, leveraging prototype alignment and consistency constraints, to facilitate mutual corrections between the augmented and original graphs.
arXiv Detail & Related papers (2025-06-27T15:11:49Z) - Incorporating Attributes and Multi-Scale Structures for Heterogeneous Graph Contrastive Learning [8.889313669713918]
We propose a novel contrastive learning framework for heterogeneous graphs (ASHGCL)
ASHGCL incorporates three distinct views, each focusing on node attributes, high-order and low-order structural information, respectively.
We introduce an attribute-enhanced positive sample selection strategy that combines both structural information and attribute information.
arXiv Detail & Related papers (2025-03-18T05:15:21Z) - DynaGRAG | Exploring the Topology of Information for Advancing Language Understanding and Generation in Graph Retrieval-Augmented Generation [0.0]
A novel GRAG framework, Dynamic Graph Retrieval-Agumented Generation (DynaGRAG), is proposed to focus on enhancing subgraph representation and diversity within the knowledge graph.
Experimental results demonstrate the effectiveness of DynaGRAG, showcasing the significance of enhanced subgraph representation and diversity for improved language understanding and generation.
arXiv Detail & Related papers (2024-12-24T16:06:53Z) - LLM-Based Multi-Agent Systems are Scalable Graph Generative Models [73.28294528654885]
GraphAgent-Generator (GAG) is a novel simulation-based framework for dynamic, text-attributed social graph generation.<n>GAG simulates the temporal node and edge generation processes for zero-shot social graph generation.<n>The resulting graphs exhibit adherence to seven key macroscopic network properties, achieving an 11% improvement in microscopic graph structure metrics.
arXiv Detail & Related papers (2024-10-13T12:57:08Z) - Informative Subgraphs Aware Masked Auto-Encoder in Dynamic Graphs [1.3571543090749625]
We introduce a constrained probabilistic generative model to generate informative subgraphs that guide the evolution of dynamic graphs.
The informative subgraph identified by DyGIS will serve as the input of dynamic graph masked autoencoder (DGMAE)
arXiv Detail & Related papers (2024-09-14T02:16:00Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
We propose a Graph Structure Self-Contrasting (GSSC) framework that learns graph structural information without message passing.
The proposed framework is based purely on Multi-Layer Perceptrons (MLPs), where the structural information is only implicitly incorporated as prior knowledge.
It first applies structural sparsification to remove potentially uninformative or noisy edges in the neighborhood, and then performs structural self-contrasting in the sparsified neighborhood to learn robust node representations.
arXiv Detail & Related papers (2024-09-09T12:56:02Z) - Node Classification via Semantic-Structural Attention-Enhanced Graph Convolutional Networks [0.9463895540925061]
We introduce the semantic-structural attention-enhanced graph convolutional network (SSA-GCN)
It not only models the graph structure but also extracts generalized unsupervised features to enhance classification performance.
Our experiments on the Cora and CiteSeer datasets demonstrate the performance improvements achieved by our proposed method.
arXiv Detail & Related papers (2024-03-24T06:28:54Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - AmGCL: Feature Imputation of Attribute Missing Graph via Self-supervised
Contrastive Learning [2.42435538337438]
Attribute missing Graph Contrastive Learning (AmGCL) is a framework for handling missing node attributes in attribute graph data.
Our experimental results on multiple real-world datasets demonstrate that AmGCL outperforms state-of-the-art methods in both feature imputation and node classification tasks.
arXiv Detail & Related papers (2023-05-05T07:03:24Z) - Semantic Graph Neural Network with Multi-measure Learning for
Semi-supervised Classification [5.000404730573809]
Graph Neural Networks (GNNs) have attracted increasing attention in recent years.
Recent studies have shown that GNNs are vulnerable to the complex underlying structure of the graph.
We propose a novel framework for semi-supervised classification.
arXiv Detail & Related papers (2022-12-04T06:17:11Z) - Structure-Preserving Graph Representation Learning [43.43429108503634]
We propose a novel Structure-Preserving Graph Representation Learning (SPGRL) method to fully capture the structure information of graphs.
Specifically, to reduce the uncertainty and misinformation of the original graph, we construct a feature graph as a complementary view via k-Nearest Neighbor method.
Our method has quite superior performance on semi-supervised node classification task and excellent robustness under noise perturbation on graph structure or node features.
arXiv Detail & Related papers (2022-09-02T02:49:19Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.