論文の概要: Iterative Tree Analysis for Medical Critics
- arxiv url: http://arxiv.org/abs/2501.10642v1
- Date: Sat, 18 Jan 2025 03:13:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:23:25.084626
- Title: Iterative Tree Analysis for Medical Critics
- Title(参考訳): 医療評論家の反復木解析
- Authors: Zenan Huang, Mingwei Li, Zheng Zhou, Youxin Jiang,
- Abstract要約: 反復木解析(ITA)は、長い医学的テキストから暗黙の主張を抽出し、反復的で適応的な木のような推論プロセスを通じて各主張を検証するように設計されている。
以上の結果から,ITAは複雑な医療用テキスト検証タスクにおける事実不正確さを10%精度で検出する上で,従来手法よりも大幅に優れていたことが示唆された。
- 参考スコア(独自算出の注目度): 5.617649111108429
- License:
- Abstract: Large Language Models (LLMs) have been widely adopted across various domains, yet their application in the medical field poses unique challenges, particularly concerning the generation of hallucinations. Hallucinations in open-ended long medical text manifest as misleading critical claims, which are difficult to verify due to two reasons. First, critical claims are often deeply entangled within the text and cannot be extracted based solely on surface-level presentation. Second, verifying these claims is challenging because surface-level token-based retrieval often lacks precise or specific evidence, leaving the claims unverifiable without deeper mechanism-based analysis. In this paper, we introduce a novel method termed Iterative Tree Analysis (ITA) for medical critics. ITA is designed to extract implicit claims from long medical texts and verify each claim through an iterative and adaptive tree-like reasoning process. This process involves a combination of top-down task decomposition and bottom-up evidence consolidation, enabling precise verification of complex medical claims through detailed mechanism-level reasoning. Our extensive experiments demonstrate that ITA significantly outperforms previous methods in detecting factual inaccuracies in complex medical text verification tasks by 10%. Additionally, we will release a comprehensive test set to the public, aiming to foster further advancements in research within this domain.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な領域で広く採用されているが、医学分野での応用は、特に幻覚の発生に関して、独特な課題を生んでいる。
オープンエンドのロングメディカルテキストの幻覚は、2つの理由から検証が難しい批判的主張を誤解させるものとして現れている。
第一に、批判的クレームはテキスト内に深く絡み合っており、表面レベルの表示のみに基づいて抽出することはできない。
第二に、これらの主張を検証することは難しい。なぜなら、表面レベルのトークンベースの検索は、しばしば正確な証拠や具体的な証拠を欠いているため、より深いメカニズムベースの分析なしには、主張を検証できないからだ。
本稿では,医療評論家を対象としたIterative Tree Analysis(ITA)という新しい手法を提案する。
ITAは、長い医療文書から暗黙の主張を抽出し、反復的で適応的なツリーのような推論プロセスを通じて、それぞれの主張を検証するように設計されている。
このプロセスにはトップダウンタスク分解とボトムアップエビデンスの統合が含まれており、詳細なメカニズムレベルの推論を通じて複雑な医療クレームの正確な検証を可能にする。
ITAは、複雑な医療用テキスト検証タスクにおける事実不正確さを10%の精度で検出する従来の手法よりも優れていることを示す。
さらに、この領域内での研究のさらなる進歩を促進することを目的として、包括的テストセットを一般向けに公開します。
関連論文リスト
- A BERT-Based Summarization approach for depression detection [1.7363112470483526]
うつ病は世界中で流行する精神疾患であり、対処されないと深刻な反感を引き起こす可能性がある。
機械学習と人工知能は、さまざまなデータソースからのうつ病指標を自律的に検出することができる。
本研究では,入力テキストの長さと複雑さを低減させる前処理手法として,テキスト要約を提案する。
論文 参考訳(メタデータ) (2024-09-13T02:14:34Z) - Towards Reliable Medical Question Answering: Techniques and Challenges in Mitigating Hallucinations in Language Models [1.03590082373586]
本稿では,知識ベースタスク,特に医療領域における幻覚を緩和するための既存の手法のスコーピング研究を行う。
この論文で取り上げられた主要な手法は、検索・拡張生成(RAG)ベースの技術、反復的なフィードバックループ、教師付き微調整、迅速なエンジニアリングである。
これらのテクニックは、一般的な文脈では有望だが、最新の専門知識と厳格な医療ガイドラインの厳格な遵守に対するユニークな要求のために、医療領域のさらなる適応と最適化を必要としている。
論文 参考訳(メタデータ) (2024-08-25T11:09:15Z) - KnowHalu: Hallucination Detection via Multi-Form Knowledge Based Factual Checking [55.2155025063668]
KnowHaluは、大規模言語モデル(LLM)によって生成されたテキスト中の幻覚を検出する新しいアプローチである
ステップワイズ推論、マルチフォームクエリ、ファクトチェックのためのマルチフォーム知識、フュージョンベースの検出メカニズムを使用する。
評価の結果,KnowHaluは様々なタスクにおける幻覚検出においてSOTAベースラインを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-04-03T02:52:07Z) - Comparing Knowledge Sources for Open-Domain Scientific Claim
Verification [6.726255259929497]
PubMedは特殊なバイオメディカルクレームとうまく連携するが、Wikipediaは日常的な健康問題に向いている。
結果について議論し、頻繁な検索パターンと課題を概説し、将来有望な方向性を提供する。
論文 参考訳(メタデータ) (2024-02-05T09:57:15Z) - What Makes Medical Claims (Un)Verifiable? Analyzing Entity and Relation
Properties for Fact Verification [8.086400003948143]
BEAR-Factコーパス(BEAR-Fact corpus)は、科学的事実検証のための最初のコーパスである。
クレームテキストから純粋に証拠検索の成功を確実に推定できることを示す。
データセットはhttp://www.ims.uni-stuttgart.de/data/bioclaimで公開されている。
論文 参考訳(メタデータ) (2024-02-02T12:27:58Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
大規模言語モデル(LLM)は、質問応答(QA)タスクを含む生成的および知識集約的なタスクを約束している。
本稿では,広範に採用されているLCMとデータセットを用いた医療再生QAシステムにおける幻覚現象を解析する。
論文 参考訳(メタデータ) (2023-10-10T03:05:44Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
医療対話生成には,患者の状態と医師の行動の2つの重要な特徴がある。
医療対話生成のためのエンドツーエンドの変分推論手法を提案する。
行動分類器と2つの推論検出器から構成される医師政策ネットワークは、拡張推論能力のために提案される。
論文 参考訳(メタデータ) (2021-05-13T04:14:35Z) - Unifying Relational Sentence Generation and Retrieval for Medical Image
Report Composition [142.42920413017163]
現在の手法は、個々のケースのデータセットバイアスにより、しばしば最も一般的な文を生成する。
テンプレート検索と文生成を一体化し、共通およびまれな異常に対処する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-09T04:33:27Z) - Interpretable Multi-Step Reasoning with Knowledge Extraction on Complex
Healthcare Question Answering [89.76059961309453]
HeadQAデータセットには、公衆医療専門試験で認可された複数の選択質問が含まれている。
これらの質問は、現在のQAシステムにとって最も難しいものです。
知識抽出フレームワーク(MurKe)を用いた多段階推論を提案する。
市販の事前訓練モデルを完全に活用しようと努力しています。
論文 参考訳(メタデータ) (2020-08-06T02:47:46Z) - Extracting Structured Data from Physician-Patient Conversations By
Predicting Noteworthy Utterances [39.888619005843246]
本稿では,会話の書き起こし,ビジット後要約,対応する証拠(転写文),構造化ラベルからなる新しいデータセットについて述べる。
方法論的な課題の1つは、会話が長く(約1500語)、現代のディープラーニングモデルではそれらを入力として使うのが難しいことである。
予測音声を初めてフィルタリングすることにより,診断とRoS異常の両方を認識するための予測性能を著しく向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:10:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。