論文の概要: Measuring Fairness in Financial Transaction Machine Learning Models
- arxiv url: http://arxiv.org/abs/2501.10784v2
- Date: Wed, 22 Jan 2025 20:34:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 12:37:14.420046
- Title: Measuring Fairness in Financial Transaction Machine Learning Models
- Title(参考訳): 金融取引機械学習モデルにおける公正度の測定
- Authors: Deniz Sezin Ayvaz, Lorenzo Belenguer, Hankun He, Deborah Dormah Kanubala, Mingxu Li, Soung Low, Carlos Mougan, Faithful Chiagoziem Onwuegbuche, Yulu Pi, Natalia Sikora, Dan Tran, Shresth Verma, Hanzhi Wang, Skyler Xie, Adeline Pelletier,
- Abstract要約: Mastercardは、カード使用の最適化と不正行為防止を目的とした機械学習モデルの開発とデプロイを行う。
これらのモデルは、クロスボーダートランザクションや業界固有の支出を含む、集計および匿名化されたカード使用パターンを使用する。
Mastercardは、そのData and Tech Responsibility Principlesに基づいて、有効性、公正性、透明性のために構築および購入されたAIを評価するAIガバナンスプログラムを確立した。
- 参考スコア(独自算出の注目度): 6.68190250415387
- License:
- Abstract: Mastercard, a global leader in financial services, develops and deploys machine learning models aimed at optimizing card usage and preventing attrition through advanced predictive models. These models use aggregated and anonymized card usage patterns, including cross-border transactions and industry-specific spending, to tailor bank offerings and maximize revenue opportunities. Mastercard has established an AI Governance program, based on its Data and Tech Responsibility Principles, to evaluate any built and bought AI for efficacy, fairness, and transparency. As part of this effort, Mastercard has sought expertise from the Turing Institute through a Data Study Group to better assess fairness in more complex AI/ML models. The Data Study Group challenge lies in defining, measuring, and mitigating fairness in these predictions, which can be complex due to the various interpretations of fairness, gaps in the research literature, and ML-operations challenges.
- Abstract(参考訳): 金融サービスのグローバルリーダであるMastercardは、カード使用の最適化と高度な予測モデルによる不正行為の防止を目的とした、マシンラーニングモデルの開発とデプロイを行っている。
これらのモデルでは、クロスボーダー取引や業界固有の支出を含む、集計および匿名化されたカード使用パターンを使用して、銀行のオファリングを調整し、収益機会を最大化する。
Mastercardは、そのData and Tech Responsibility Principlesに基づいて、有効性、公正性、透明性のために構築および購入されたAIを評価するAIガバナンスプログラムを確立した。
この取り組みの一環としてMastercardは、より複雑なAI/MLモデルの公正性を評価するために、データ研究グループを通じてチューリング研究所から専門知識を求めてきた。
Data Study Groupの課題は、これらの予測における公正性の定義、測定、緩和にある。
関連論文リスト
- FinML-Chain: A Blockchain-Integrated Dataset for Enhanced Financial Machine Learning [2.0695662173473206]
本稿では、高周波オンチェーンデータと低周波オフチェーンデータを統合するためのフレームワークを提案する。
このフレームワークは、トランザクションフィーメカニズムのような経済メカニズムを分析するためのモジュラーデータセットを生成する。
我々は、金融研究を推進し、ブロックチェーン駆動システムの理解を改善するデータセットを作成できるフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2024-11-25T10:55:11Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - A machine learning workflow to address credit default prediction [0.44943951389724796]
信用デフォルト予測(CDP)は個人や企業の信用力を評価する上で重要な役割を果たす。
CDPを改善するためのワークフローベースのアプローチを提案する。これは、借り手が信用義務を負う確率を評価するタスクを指す。
論文 参考訳(メタデータ) (2024-03-06T15:30:41Z) - A Hypothesis on Good Practices for AI-based Systems for Financial Time
Series Forecasting: Towards Domain-Driven XAI Methods [0.0]
機械学習とディープラーニングは、財務予測や予測タスクでますます普及している。
これらのモデルは透明性と解釈可能性に欠けることが多く、金融のような繊細なドメインでの使用を困難にしている。
本稿では、金融のためのAIベースのシステムに説明可能性を展開するための優れた実践について考察する。
論文 参考訳(メタデータ) (2023-11-13T17:56:45Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Analyzing Machine Learning Models for Credit Scoring with Explainable AI
and Optimizing Investment Decisions [0.0]
本稿では、説明可能なAI(XAI)の実践に関連する2つの異なる質問について検討する。
この研究では、単一分類器(論理回帰、決定木、LDA、QDA)、異種アンサンブル(AdaBoost、ランダムフォレスト)、シーケンシャルニューラルネットワークなど、さまざまな機械学習モデルを比較した。
LIMEとSHAPの2つの高度なポストホックモデル説明可能性技術を用いて、MLベースのクレジットスコアリングモデルを評価する。
論文 参考訳(メタデータ) (2022-09-19T21:44:42Z) - Pre-Trained Models: Past, Present and Future [126.21572378910746]
大規模事前訓練モデル(PTM)は近年大きな成功を収め、人工知能(AI)分野におけるマイルストーンとなった。
知識を巨大なパラメータに格納し、特定のタスクを微調整することで、巨大なパラメータに暗黙的にエンコードされた豊富な知識は、さまざまな下流タスクの恩恵を受けることができる。
AIコミュニティが、モデルをスクラッチから学習するのではなく、下流タスクのバックボーンとしてPTMを採用することは、今、コンセンサスになっている。
論文 参考訳(メタデータ) (2021-06-14T02:40:32Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
信用リスクモデリングは重要な役割を果たす。
近年,機械学習や深層学習の手法が採用されている。
この分野における説明可能性問題に LIME 手法を適用することを提案する。
論文 参考訳(メタデータ) (2020-12-30T10:27:59Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z) - Machine Learning Algorithms for Financial Asset Price Forecasting [0.0]
本研究は、高性能コンピューティングインフラ上での機械学習アルゴリズムの最先端実装を直接比較し、対比する。
実装された機械学習モデル – ストックユニバース全体の時系列データに基づいてトレーニングされた – は、OOS(Out-of-sample)テストデータにおいて、CAPMを大幅に上回っている。
論文 参考訳(メタデータ) (2020-03-31T18:14:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。